PHYSIOLOGICAL ASPECTS OF SPORT TRAINING AND PERFORMANCE

Jay Hoffman, PhD
College of New Jersey
CONTENTS

Introduction vii

PART I PHYSIOLOGICAL ADAPTATIONS TO EXERCISE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neuromuscular System and Exercise</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Endocrine System and Exercise</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Metabolic System and Exercise</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Cardiovascular System and Exercise</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Immunological System and Exercise</td>
<td>57</td>
</tr>
</tbody>
</table>

PART II EXERCISE TRAINING PRINCIPLES AND PRESCRIPTIONS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Principles of Training</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>Resistance Training</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>Anaerobic Conditioning and the Development of Speed and Agility</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>Endurance Training</td>
<td>109</td>
</tr>
<tr>
<td>10</td>
<td>Concurrent Training</td>
<td>121</td>
</tr>
<tr>
<td>11</td>
<td>Periodization</td>
<td>131</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>12</td>
<td>Plyometrics</td>
<td>143</td>
</tr>
<tr>
<td>13</td>
<td>Warm-Up and Flexibility</td>
<td>155</td>
</tr>
<tr>
<td>14</td>
<td>Athletic Performance Testing</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>PART III NUTRITION, FLUID REGULATION, AND ERGOGENIC AIDS</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sports Nutrition</td>
<td>185</td>
</tr>
<tr>
<td>16</td>
<td>Hydration</td>
<td>187</td>
</tr>
<tr>
<td>17</td>
<td>Ergogenic Aids</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>PART IV ENVIRONMENTAL FACTORS</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Exercise in the Heat</td>
<td>211</td>
</tr>
<tr>
<td>19</td>
<td>Exercise in the Cold</td>
<td>225</td>
</tr>
<tr>
<td>20</td>
<td>Exercise at Altitude</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>PART V MEDICAL AND HEALTH CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Overtraining</td>
<td>237</td>
</tr>
<tr>
<td>22</td>
<td>Diabetes Mellitus</td>
<td>247</td>
</tr>
<tr>
<td>23</td>
<td>Exercise-Induced Asthma</td>
<td>259</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>About the Author</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>291</td>
</tr>
<tr>
<td></td>
<td></td>
<td>329</td>
</tr>
<tr>
<td></td>
<td></td>
<td>343</td>
</tr>
</tbody>
</table>
INDEX

Note: Page numbers followed by t or f refer to the table or figure on that page.

A
A band 4
absolute training stimulus 72
acceleration 101, 144
acclimation 231
acclimatization 228, 231, 248
to cold 240-241
acetylcholine 6, 42
acetyl coenzyme A 30
achilles tendon exercises, posterior lower leg and 163
acid/base balance 36
acidosis 245
ACTH. See adrenocorticotropic hormone
actin 4
interaction with myosin 6f
action potential 5-6, 40
sequence of events 9f
active rest 133
active sites 5
acute exercise, cardiac output during 46-49
acute hyperthermia 244
acute mountain sickness (AMS) 256-257
acute phase proteins 62
exercise and 65
acute program variables 72
adaptations 132, 262
adaptive immune system 58
adductor exercises 164
adenosine diphosphate (ADP) 5, 28
adenosine triphosphate (ATP) 5, 28, 110, 122
ADH. See antidiuretic hormone
adherence 64
adhesions 159
adipocyte hypertrophy 275
adipose tissue 28
ADP. See adenosine diphosphate
adrenal cortex 22
glands 216
adrenocorticotropic hormone (ACTH) 22
aerobic capacity (VO2 max) 72, 110
comparison of sedentary individuals to elite runners 111
maximal 111f, 175-178
aerobic endurance 141
maximal 175-178
aerobic exercise, in cold 241
aerobic metabolism 7
aerobic performance 205-206
aerobic power 229
aerobic training 28
afterload 50
agility 78, 84, 180
development of 102-108
standards for 180
T and side shuffle drills 105f
agonist 10
muscle groups 79, 144
airway drying 286
alarm phase 192
albumin 196
aldosterone 24-25
allergens 284-285
all-or-none law 6
Allosteric Modulation
- Allosteric modulation 16
- Acclimatization to 252-255
- Anaerobic performance and 252
- Athletic performance and 251-252
- Cardiovascular and hematological changes 254
- Cardiovascular response to 251
- Endurance performance and 251-252
- Maximal aerobic power changes 252f
- Metabolic and neuromuscular changes 254-255
- Metabolic response 251
- Physiological response to 249-251
- Respiratory changes 253-254
- Respiratory response to 250-251

Altitude
- Altitude acclimatization to 252-255
- Acute exposure and 257-258
- Anaerobic performance and 252
- Athletic performance and 251-252
- Cardiovascular and hematological changes 254
- Cardiovascular response to 251
- Endurance performance and 251-252
- Maximal aerobic power changes 252f
- Metabolic and neuromuscular changes 254-255
- Metabolic response 251
- Physiological response to 249-251
- Respiratory changes 253-254
- Respiratory response to 250-251

Anaerobic Performance
- Anaerobic performance 206-208
- Anaerobic power 86, 174-175, 206
- Anaerobic sports 94, 118
- Individual 98-100
- Anaerobic threshold 112
- Anaerobic training 28
- Physiological adaptations to high intensity 94f

Anaphylatoxins
- Anaphylatoxins 62

Anabolic Exercise
- Anabolic exercise 18
- Anabolic hormones 128
- Anabolic precursors 213
- Androgenic 216

Antioxidants
- Antioxidants 191, 212
- Argile vasopressin (AVP) 24
- Arterial saturation (SaO2) 250
- Arterial system 43
- Arteries 43
- Arterioles 43
- Arteriovenous oxygen difference 49

Asthma
- Asthma exercising with 289-289
- Factors modifying response to 286-288
- Nonpharmacological therapy 288-289
- Asthmogenic activities, high and low 289f
- Asthmogenicity 289
- Astrand cycle ergometer protocol 177f
- Athletic profile 170
- Atmosphere model 248f
- ATP. See adenosine triphosphate
- ATP-PC. See phosphagen energy system
- Atrial 40
- Atria synctium 41
- Atrioventricular node (AV node) 41
- Atrium 40
- Atrophy 127
- Autonomic nervous system 43
- AV node. See atrioventricular node
- AVP. See arginine vasopressin
- Axons 6

B (Ballistic Movement)
- Ballistic movement 156
- Stretching 157-158
- Training 145-147
- Barometric pressure 248
- Oxygen pressure and 248f
- Basal metabolic rate 128
- Effect of concurrent training on 128-129
- Basketball 94-95
- Anaerobic program 96
- Speed and agility changes 108f
- Basophils 58
- B cells 58, 60
- Behind neck stretch 167
- Beta-adrenergic receptors 267
- β-adrenergic receptors 268
B-agonists 220-221, 288
B-blockers 224
B-carotene 191
B-cells 22, 274
B-hydroxy-B-methylbutyrate (HMB) 213, 222
B-oxidation 30
BIA. See bioelectrical impedance analysis
bicarbonate buffers 36
ions 46
loading 222
bicuspid valve 40
bi-cycle periodized training program 140f
bioelectrical impedance analysis (BIA) 182-184
bioenergetics 28
biomechanical analysis 78
blood doping 212, 223
run time effect 223f
blood lactate changes after detraining 75f
concentrations 37f
response in endurance athletes 113f
blood pressure 43-44, 53
response 49-50, 50f
systolic 43
blood volume 55,
body composition 72, 128, 180-184
men and women 181
body density, conversion to % body fat 183f
body fat computing percentage with regression equations 182-183
male and female descriptive data 181
body fluid losses, partitioning of 203f
body size 170
Bohr effect 45
Boyle's law 248
bradycardia 42
bronchi 44
bronchioles 44
bronchoconstriction 28
bronchospasm 284
Bruce treadmill protocol 176f
buffering capacity 250
bundle branches 42
bundle of His 41
butterfly stretch 164
butterflies exercises 165-166
C
Caffeine 213, 221-222
calcium 192
capillaries 43
capillary density 31-32, 255
catecholamines 46
carbohydrates 22, 188
metabolism 274
metabolism and exercise 277
oxidation and temperature 241f
supplementation exhaustion effect 199f
utilization 199-196, 194f
carbon dioxide 30
release 47f
transport 45-46
carbonic acid 46
cardiac cycle 40-41, 42f
cardiac drift 49
cardiac morphology 53-54
cardiac output 42-43
altitude effect 251
distribution 44f, 49-50
exercise intensity and 47f
heat effect 229
hypohydration effect 203
males 43f
training effect on 52-53
cardiovascular adaptations 52f
cardiovascular response 46-50, 52-54
cardiovascular system 40-44
carotid body 253
carryover 72
catabolic effect 18
catabolic hormones 128
catabolic pathways 213
catechoamines 22-24, 267, 277, 284
CD. See clusters of differentiation
ceruloplasmin 62
Charles' law 248
chemotactic 58
chemotaxis 62
chest exercises 166
chilblain 243, 246
cholesterol 216
chronic hypothermia 244
chronotropy 42
circulation, systemic 40
citrate synthase reaction 30
clenbuterol 220-221
cold anemia 192
cold environment exercise recommendations 246f
countermovement jump cold anesthesis 245
environmental exercise recommendations 246f
exercise performance in 241-243
immersion effect on peak torque 243f
medical concerns regarding injuries from 243-246
cold (continued)
metabolic rate during exposure to 239f
physiological responses to 238-240
stress, heat loss, and 238

collagen 159
competitive phase 132
complement
exercise and 65
system 58, 61-62
compound setting 79
concentric hypertrophy 54
concentric muscle action 78
concentric training 144
concurrent strength, effect on VO2 max 122
concurrent training 122

effects on trained subjects 124f
effects on untrained subjects 124f
hormonal and muscle fiber response 125f
conditioning 98
conduction 41-42, 228
conductive mechanisms 238
connective tissue 4, 156
contraction
phase 40
velocity 170
convection 228
convective mechanisms 238
core body temperature 228, 238
cortisol 17, 22-23, 128, 266
Costill and Fox treadmill protocol 176f
Countermovement Jump (CMJ) 145f, 146
C-reactive protein 62
Creatine 28, 212
kinase 28
supplementation 213-214
body mass changes from 215
muscle mass effect 215f
muscle strength gains from 214f
performance and 214-215
side effects of 215
cross-bridges 4
cross-country runners
Division 1 training 117f
volume 118f
cross-reactivity 17
cross-training 113, 116-117
cyclo AMP 18
cycling, of anabolic steroids 217
cytokines 59-61
exercise and 65
functions 61f
proinflammatory 65
cytotoxicity 59

D
Dalton’s law 248
deamination 197
deep frostbite 245
degranulation 62
dehydration 24, 202
anaerobic power outputs and 205f
basketball performance and 205f
fluid regulatory response to 25f
psychological effects of and warning signs 204f
running times and 205f
dehydroepiandrosterone (DHEA) 220
dendrites 6
depolarization 5
desmosomes 40
DHEA. See dehydroepiandrosterone
diabetes
exercise and 277-281
effect on type 1 277
effect on type 2 279-281
treatment and management of 276-277
diabetes mellitus
overview 274-277
statistics on 274
type 1 274
type 2 274-276
diaphragm 44
diastasis 40
diastole 40
diastolic blood pressure 43
diffusion capacity 253
disaccharides 188
dissipation 228
distance runners training methods 117f
diuresis 251
dosing 216-217
double-leg lower-back stretch 166
down-regulation 17
of insulin 275
drag 252
duration 78
dynamic constant resistance 171
testing 172-173
training 82-83
dynorphins 26
dyperplasia 12

eccentric contraction 144
eccentric hypertrophy 53
eccentric muscle action 78
eccentric training 83
edema 246
Edgren side-step test 180f
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast-twitch fibers</td>
<td>7</td>
</tr>
<tr>
<td>muscle 108</td>
<td></td>
</tr>
<tr>
<td>type II 111</td>
<td></td>
</tr>
<tr>
<td>fatigue 95</td>
<td></td>
</tr>
<tr>
<td>exercise duration and 114</td>
<td></td>
</tr>
<tr>
<td>dehydration and 205</td>
<td></td>
</tr>
<tr>
<td>free radicals and 191</td>
<td></td>
</tr>
<tr>
<td>heat and 230</td>
<td></td>
</tr>
<tr>
<td>index 174</td>
<td></td>
</tr>
<tr>
<td>overtraining and 262</td>
<td></td>
</tr>
<tr>
<td>rates 170</td>
<td></td>
</tr>
<tr>
<td>fats 188-189</td>
<td></td>
</tr>
<tr>
<td>utilization of 34-35, 196-197</td>
<td></td>
</tr>
<tr>
<td>fatty acids 188</td>
<td></td>
</tr>
<tr>
<td>FEV. See forced expiratory volume, in first second</td>
<td></td>
</tr>
<tr>
<td>FEV% See forced expiratory volume, percent</td>
<td></td>
</tr>
<tr>
<td>fibers 4, 188</td>
<td></td>
</tr>
<tr>
<td>composition 170</td>
<td></td>
</tr>
<tr>
<td>type I 112/</td>
<td></td>
</tr>
<tr>
<td>type of 110</td>
<td></td>
</tr>
<tr>
<td>fibroblasts 60</td>
<td></td>
</tr>
<tr>
<td>fibrous cartilage 159</td>
<td></td>
</tr>
<tr>
<td>Fick equation 49</td>
<td></td>
</tr>
<tr>
<td>fitness components 78</td>
<td></td>
</tr>
<tr>
<td>flexibility 78, 156</td>
<td></td>
</tr>
<tr>
<td>assessment of 160-161</td>
<td></td>
</tr>
<tr>
<td>exercises for 163-167</td>
<td></td>
</tr>
<tr>
<td>factors affecting 158-159</td>
<td></td>
</tr>
<tr>
<td>kinesiological 159</td>
<td></td>
</tr>
<tr>
<td>physiological 159</td>
<td></td>
</tr>
<tr>
<td>strength/power production and 161-163</td>
<td></td>
</tr>
<tr>
<td>flight phase 101</td>
<td></td>
</tr>
<tr>
<td>fluids</td>
<td></td>
</tr>
<tr>
<td>consumption of 208</td>
<td></td>
</tr>
<tr>
<td>and gastric emptying 209f</td>
<td></td>
</tr>
<tr>
<td>palatability of 208</td>
<td></td>
</tr>
<tr>
<td>regulatory hormones for 24-26</td>
<td></td>
</tr>
<tr>
<td>replacement of 206-210</td>
<td></td>
</tr>
<tr>
<td>temperature of 208</td>
<td></td>
</tr>
<tr>
<td>flying starts 100</td>
<td></td>
</tr>
<tr>
<td>football 95/98</td>
<td></td>
</tr>
<tr>
<td>drive charts 97f</td>
<td></td>
</tr>
<tr>
<td>NCAA Division III series and plays 98f</td>
<td></td>
</tr>
<tr>
<td>foot contacts 150</td>
<td></td>
</tr>
<tr>
<td>force 144</td>
<td></td>
</tr>
<tr>
<td>capability 83</td>
<td></td>
</tr>
<tr>
<td>development 156</td>
<td></td>
</tr>
<tr>
<td>production 170</td>
<td></td>
</tr>
<tr>
<td>-velocity curve 83f</td>
<td></td>
</tr>
<tr>
<td>forced expiratory volume in first second (FEV) 284</td>
<td></td>
</tr>
<tr>
<td>percent (FEV%) 284</td>
<td></td>
</tr>
<tr>
<td>four corner drill 105</td>
<td></td>
</tr>
<tr>
<td>agility 106f</td>
<td></td>
</tr>
<tr>
<td>Frank-Starling mechanism 48</td>
<td></td>
</tr>
<tr>
<td>free fatty acids 30, 274</td>
<td></td>
</tr>
<tr>
<td>free radicals 191</td>
<td></td>
</tr>
<tr>
<td>frequency 72</td>
<td></td>
</tr>
<tr>
<td>of training 150-151</td>
<td></td>
</tr>
<tr>
<td>frostbite 243-245</td>
<td></td>
</tr>
<tr>
<td>frostnip 244</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>gangrene 246</td>
<td></td>
</tr>
<tr>
<td>gap junctions 40</td>
<td></td>
</tr>
<tr>
<td>GAS. See General Adaptation Syndrome</td>
<td></td>
</tr>
<tr>
<td>gases, pressure differentials in 45</td>
<td></td>
</tr>
<tr>
<td>gastric emptying 202</td>
<td></td>
</tr>
<tr>
<td>gastrocnemius exercise 163-164</td>
<td></td>
</tr>
<tr>
<td>General Adaptation Syndrome (GAS) 132, 132f</td>
<td></td>
</tr>
<tr>
<td>general preparation 132</td>
<td></td>
</tr>
<tr>
<td>genetic ceiling 74</td>
<td></td>
</tr>
<tr>
<td>GH. See growth hormones</td>
<td></td>
</tr>
<tr>
<td>globin molecule 46</td>
<td></td>
</tr>
<tr>
<td>glucagon 277</td>
<td></td>
</tr>
<tr>
<td>glucocticoi dissociate 260</td>
<td></td>
</tr>
<tr>
<td>gluconeogenesis 22, 29, 196, 274</td>
<td></td>
</tr>
<tr>
<td>glucose 16, 188</td>
<td></td>
</tr>
<tr>
<td>-alanine cycle 197</td>
<td></td>
</tr>
<tr>
<td>levels 274</td>
<td></td>
</tr>
<tr>
<td>-phosphate 29</td>
<td></td>
</tr>
<tr>
<td>polymers 209f</td>
<td></td>
</tr>
<tr>
<td>-6-phosphate 29</td>
<td></td>
</tr>
<tr>
<td>glucosuria 274</td>
<td></td>
</tr>
<tr>
<td>GLUT 4 transporter protein 280</td>
<td></td>
</tr>
<tr>
<td>glycemic control 277</td>
<td></td>
</tr>
<tr>
<td>glycemic index 199</td>
<td></td>
</tr>
<tr>
<td>glycerol 30, 188</td>
<td></td>
</tr>
<tr>
<td>glycogen 22, 28, 188</td>
<td></td>
</tr>
<tr>
<td>depletion 202</td>
<td></td>
</tr>
<tr>
<td>hypohydration effect on resynthesis 204f</td>
<td></td>
</tr>
<tr>
<td>levels 269</td>
<td></td>
</tr>
<tr>
<td>loading 196</td>
<td></td>
</tr>
<tr>
<td>phosphorylase activity 277</td>
<td></td>
</tr>
<tr>
<td>synthesis 274</td>
<td></td>
</tr>
<tr>
<td>synthetase 197</td>
<td></td>
</tr>
<tr>
<td>glycojenolysis 274</td>
<td></td>
</tr>
<tr>
<td>glycolysis 29, 95</td>
<td></td>
</tr>
<tr>
<td>ATP from 32f</td>
<td></td>
</tr>
<tr>
<td>glycolytic energy pathway 29f</td>
<td></td>
</tr>
<tr>
<td>system 28</td>
<td></td>
</tr>
<tr>
<td>glycoylc enzymes 33</td>
<td></td>
</tr>
<tr>
<td>capacity 122</td>
<td></td>
</tr>
<tr>
<td>glycoproteins 60</td>
<td></td>
</tr>
<tr>
<td>golgi tendon organs 8, 144, 156</td>
<td></td>
</tr>
</tbody>
</table>
fast-twitch fibers 7
muscle 108
type II 111
fatigue 95
exercise duration and 114
dehydration and 205
free radicals and 191
heat and 230
index 174
overtraining and 262
rates 170
tats 188-189
utilization of 54-55, 196-197
fatty acids 188
FEV. See forced expiratory volume, in first second
FEV%. See forced expiratory volume, percent
fibers 4, 188
composition 170
type I 112/
type of 110
fibroblasts 60
fibrous cartilage 159
Fick equation 49
fitness components 78
flexibility 78, 156
assessment of 160-161
exercises for 163-167
factors affecting 158-159
kinesiological 159
physiological 159
strength/power production and 161-163
flight phase 101
fluids
consumption of 208
and gastric emptying 209/
palatability of 208
regulatory hormones for 24-26
replacement of 208-210
temperature of 208
flying starts 100
food supplements, 199
football 85798
drive charts 97f
NCAA Division III series and plays 98r
foot contacts 150
force 144
capability 83
development 156
production 170
-velocity curve 83f
forced expiratory volume
in first second (FEV) 284
percent (FEV%) 284
four corner drill 105
agility 106f
Frank-Starling mechanism 48
free fatty acids 30, 274
free radicals 191
frequency 72
of training 150-151
frostbite 243-245
frostnip 244
G
gangrene 246
gap junctions 40
GAS. See General Adaptation Syndrome
wastes, pressure differentials in 45
gastro-empting 202
gastrocnemius exercise 163-164
General Adaptation Syndrome (GAS) 132, 132f
general preparation 132
genetic ceiling 74
GH. See growth hormones
globin molecule 46
gluconon hydroxylation 277
glucagon 277
glucocorticoids 288
glutamine 22, 29, 196, 274
glucose 16, 188
-oxaloacetate cycle 197
levels 274
-1-phosphate 29
polymers 209/
-phosphate 29
-glucose 274
GLUT 4 transporter protein 280
glycemic control 277
glycemic index 199
glucose 30, 188
glycogen 22, 28, 188
depletion 202
hypophosphorylation effect on resynthesis 204f
levels 269
loading 196
phosphorylase activity 277
synthesis 274
synthetase 195
glycogenolysis 274
glycolysis 23, 85
ATP from 321
glycolytic energy
pathways 29f
system 28
glycolytic enzymes 33
capacity 122
glycoproteins 60
golgi tendons organs 8, 144, 156
granulocytes 58
growth hormones (GH) 18, 20-21
H
HACE. See high altitude edema, cerebral
hamstring exercises 163-164
adductors and 164
stretch 158
HAPE. See high altitude edema, pulmonary
heart 41f
morphology of 40
heart rate 53, 115-116
-cardiac output and 251
-conduction and 41-42
during acute exercise 46-48
exercise intensity and 47f, 48f
-oxygen consumption and 115f
reserve (HRR) 115
heat
acclimatization 231-233, 232t
aerobic exercise and 229-230
anaerobic exercise in 231
blood distribution in 230f
-cardiovascular response to 229
-cramps 233
-dissipation 228
-exchange 229f
-illnesses 233-235
-performance and 229-231
-physiological response to 228-229
-syncpe 234-235
heat exhaustion 234
risk of 235f
-warming signs 235f
heat stress 228
monitoring 235-236
heatstroke
-exertional 234
-risk of 235f
-warming signs 235f
hematocrit 55
heme molecule 46
hemoglobin 189
high-intensity exercise
buffering capacity 36-37
-oxidative enzymes 36
-high-intensity training
ATP-PC adaptations 35
-glycolytic system adaptations 35-36
hip flexor exercises 165
histamine release 286
HMB. See 8-hydroxy-8-methylbutyrate
homeostasis 16, 228
thermal 238
hormonal adaptations, concurrent training 128
hormonal concentrations, circulation changes
-16-17
hormone-receptors
complex 18
interaction 19f
hormones 171-18
secretions 16, 16f
types of 17-18
HRR. See heart rate reserve
hurdler's stretch 165
hydration 228
hydrostatic weighting 182
hyperemia 274
hyperglycemia 274
hyperinsulinemia 275
hyperosmolality theory 285
hyperthermia 228
subacute 244
hypertrophy 80, 127
phase 133
hyperventilation 250, 285
hypervolemia 55
hypobaric environment 248-249
hypoglycemia 277
hypohydration 202
performance and 205-208
-physiological effects 203-204
hypotnepatia 210
hypothalamic-pituitary-adrenal/gonadal axes,
overtraining and 268f
hypothalamic-pituitary dysfunction 268
hypothalamus 268
hypothermia 239, 244
clinical features 245f
hypoxia 245, 249
symptoms of 250f
H zone 4
I
I band 4
iceberg profile 269
IDDM. See insulin-dependent diabetes mellitus
IFN. See interferons
IGFs. See insulin-like growth factors
IL. See interleukins
immersion foot 243, 246
immune response
to exercise 62-68
exercise-induced suppression 67f
immune system, cells of 58-59
immunoglobulins
classes of 60
exercise and 65-66
functions 61f
impulse 144
individuality principle 73-74
inferior vena cava 43
innate immune system 58
inorganic phosphate (Pi) 5
inotropy 42
inspiration 44-45
insulin 16, 22, 188
deficiency effect, acute 275f
resistance 274
insulin-dependent diabetes mellitus (IDDM) 274
insulin-like growth factors (IGFs) 22
intensity
of activity 78
of exercise 284
aerobic 110
movements 94
of training 132, 144, 262
intercalated disks 40
interferons (IFN) 60
interleukins (IL) 60
internal intercostal 44
intermodal pathways 41
intrastitial fluid 202
interval sprints 100
interval training 100f
intraventricular septum 40
intracellular fluid 202
infrasural fibers 8, 156
intrapulmonary pressure 45
iron 192
islets of Langerhans 22, 274
isokinetic testing 171-172
isokinetic training 84
isometric muscle action 78
isometric training
benefits 82
limitations 82
isotonic contraction 82
J
joint angle 72
joint structure 159
jump performance
training styles compared 146f
foot contacts by season 150f
K
ketone bodies 274
ketosis 274
ketone bodies 274
Krebs cycle 30, 31f
L
lactate
concentrations 21, 269
dehydrogenase 35
production 37
threshold 110, 112-113, 122
lactic acid 30
larynx 44
lateral shoulder stretch 166
L-drill 106-108
leukocytes
clusters of differentiation on 60
distribution of 58t
response to acute exercise 62-63
response to long-term training 63-64
types of 58-59
ligaments 159
line drill 175f
lipids 188
metabolism of 274
lipolysis 30, 196
LH. See luteinizing hormone
Lock-and-key theory 17
lower back exercises 165-166
lymphpocytes 58, 59-60
lymphoid lineage 58
lysis 61
lysosomes 59
lysozymes 58
M
macrominerals 192
macrophages 59
main competition phase 132
maintenance phase 134
major histocompatibility complex (MHC) 60
mast cells 59, 286
Matveyev, Leonid 132-141
Model of Periodization 133f
maximal aerobic capacity 110-111, 122
effect of concurrent training on 123f
maximal aerobic capacity (VO2) 229
maximal aerobic power 205
maximal heart rate 115
maximal oxygen consumption 284
maximal oxygen uptake 176f
maximal strength, effect of concurrent strength
and endurance training on 123-125
INDEX
non-insulin-dependent diabetes mellitus
(NIDDM) 274
insulin and glucose reaction to exercise 280f
potential mechanisms for onset 276f
nonmedullary 6
norepinephrine 267
neuromuscular junctions 6
nutrients
classes and functions of 186-194
utilization 194-198
nutritional intake
postcompetition 199-200
precompetition 198-199
timing of 198-200
nylate cyclase 18
O
OBLA. See onset of blood lactate accumulation
onset of blood lactate accumulation (OBLA) 112
opiods 26
opsonin 61
opsonization 61
osmolality 24, 203, 210
osmoreceptors 203
osmotic diuresis 274
overcompensation 263
overload principle 72
overreaching 95, 262
overtraining 132
autonomic nervous system disturbances
264-266
biochemical disturbances 269
definitions of 262-263
immunological disturbances 269
major symptoms 265-266f
neuroendocrine disturbances 266-268
performance and 262f
indicators 269
tests for 271f
psychological disturbances 269
recognition of 264-270
suscetibility to 263-264
syndrome 95, 123, 262
treatment for 270
oxidation 197
energy system 28
enzymes 33, 252
metabolism, ATP from 32f
oxygen
consumption (VO2) 46
content in acclimatized subjects 254f
radicals 59
saturation 46f

INDEX

transport 45746
uptake, temperature, and 241f
oxygen 16
P
P. See power
palmitic acid 30
pancreas 274
parasympathetic nervous system 42, 264
partial pressure 45, 248
partner-assisted stretches
calf 163
internal rotator 166
pathogens 58
PC. See phosphocreatine
peak expiratory flow rate (PEFR) 284
asthmatic and nonasthmatic subjects 284f
peaking phase 133
peak power 174
pectoralis stretch with partner 166
PEFR. See peak expiratory flow rate
peptides 17
percent body fat 182
performance testing, 170-171
perimysium 4
periodization 132-141
efficiency of 134-137
models 135f
total season training 134f
linear, nonlinear, and undulation 137-141
strength training program, volume and intensity 134f
periodized training
for endurance 141, 141f
nonlinear 137f
resistance studies 136-136f
for single event 139
peripheral resistance 43
pernio 246
phagocytes 58
action 59f
cell function, exercise training and 64-65
phagocytosis 58-59
pharynx 44
phosphagen energy system (ATP-PC) 28
PC relationship 28f
phosphatase 195
phosphocreatine (PC) 28
system 95
phosphofructokinase 35
phospholipases 58
phosphorus 192
non-insulin-dependent diabetes mellitus (NIDDM) 274
insulin and glucose reaction to exercise 280
potential mechanisms for onset 276
nonmedullary 6
norepinephrine 267
neuromuscular junctions 6
nutrients
 classes and functions of 188-194
utilization 194-198
nutritional intake
postcompetition 199-200
precompetition 198-199
timing of 198-200
rythmic cycling 18
PI.
See inorganic phosphate
pituitary glands 18
pituitary insensitivity 268
planes 159
plasma 46, 202
renin activity (PRA) 25
volume 251
pleural sacs 44
pneumotachygraphy 28
pneumotachygraphs 18
polypeptides 20
polysaccharides 188
POMC.
See proopiomelanocortin
POMS.
See profile of mood states
positive feedback 16
power (P) 78
expression of 86
muscle temperature and 243
training programs 144
-P velocity curve 152-153f
preexhaustion training 79
prescription 72
pressure gradient 45f, 248
pressure of oxygen (P0 2) 248
prestretch 144
pretraining status 73, 80
principle of diminishing returns 74
profile of mood states (POMS) 269
progression principle 72-73
endurance training and
73f
progressive overload 73
propiomelanocortin (POMC) 26
propropioceptive neuromuscular facilitation (PNF)
proprioceptors 156
proprioceptive neuromuscular facilitation (PNF)
proprioceptors 156
prostaglandins 285
proteases 58
proteins 189
synthesis 17, 128, 216
after postexercise supplements 200
utilization 197-199
by endurance athletes 198
by strength/power athletes 197-198
pyrotechnic fragments 65
protons 30
pulmonary circulation 40
pulmonary ventilation 51
Pyruvate kinase 18
P0 2 •
See pressure of oxygen
RNase 45
See ribonuclease
rdopyosophy 28
uptake, temperature, and 241f
oxygen 16
P
P See power
palmitic acid 30
paracervical 274
parasympathetic nervous system 42, 284
partial pressure 45, 248
partner-assisted stretches 153
internal rotator 166
pathogens 58
PC. See phosphocreatine
peak expiratory flow rate (PEFR) 284
asthmatic and nonasthmatic subjects 284f
peaking phase 133
peak power 174
pectoralis stretch with partner 166
PEFR. See peak expiratory flow rate
peptides 17
percent body fat 182
performance testing 170-171
perimyseum 4
perideloization 132-141
efficiency of 134-137
models 133f
entire season training 134f
linear, nonlinear, and undulation 137-141
strength training program, volume and intensity 134f
periodized training
for endurance 141, 141f
nonlinear 137f
resistance studies 135-136f
for single event 139
for special event 139-141
for team sport 137-139, 138f
peripheral resistance 43
pernio 246
phagocytes 58
action 59f
function, exercise training and 64-65
phagocytosis 58-59
pharynx 44
phagophagy energy system (ATP-PC) 28
PC relationship 22f
phosphatase 195
phosphocreatine (PC) 28
system 95
phosphofructokinase 35
phospholipases 58
phosphorus 192
transport 45f
uptake, temperature, and 241f
phosphorylation 28
physiological analysis 78
Pi. See inorganic phosphate
pituitary glands 18
pituitary insensitivity 268
planes 159
plasma 46, 202
renin activity (PRA) 25
volume 251
pleural sacs 44
pneumotachygraphy 28
pneumotachygraphs 18
polypeptides 20
polysaccharides 188
POMC.
See proopiomelanocortin
POMS.
See profile of mood states
positive feedback 16
power (P) 78
expression of 86
muscle temperature and 243
training programs 144
-P velocity curve 152-153f
preexhaustion training 79
prescription 72
pressure gradient 45f, 248
pressure of oxygen (P0 2) 248
prestretch 144
pretraining status 73, 80
principle of diminishing returns 74
profile of mood states (POMS) 269
progression principle 72-73
endurance training and 73f
progressive overload 73
propiomelanocortin (POMC) 26
proprioceptive neuromuscular facilitation (PNF)
hamstrings stretch 158f
proprioceptors 156
prostaglandins 285
proteases 58
proteins 189
resistance training (continued)
exercise
intensity 79-80
order 79
selection 79
flexibility and 89
frequency 81
integration with plyometric training 151
kicking 88
modes of 82-84
needs analysis 78
number of sets 80
performance and
agility 88
sprint 87-88
programs 89-91
bodybuilding 90
circuit 91
development 78-82
in-season 75
maximal strength 90
muscle toning 91
rest period 80
sprint training and 129
swimming 88
throwing 88
volume 80
women and 89
respiratory adaptations 54
respiratory alkalosis 220
respiratory rate 54-55
respiratory system 44-46
anatomy of 44
rest 151
resting membrane potential 6
resting metabolic rate (RMR) 128
reversibility principle 75
RM. See repetition maximum
RMR. See resting metabolic rate
rolling sprints 101, 101
ROM. See range of motion
RPE. See rating of perceived exertion
running
economy in 113
mechanics of 103

S
saltatory conduction 6
SA node. See sinoatrial node
SaO2. See arterial saturation
sarcoclermma 4
sarcomerases 4
unit 5
sarcoplasmatic reticulum 5
transverse tubules 7

satellite cells 13
SDH. See succinate dehydrogenase
sea level, training at 226-227
secretory apparatus 16
selenium 191
semilunar valves 40
semistraddle exercise 163-164
sequence of training 125-126
Seyle, Hans 132
shivering 239
shoulder exercises 166
flexor stretch 167
side shuffle 105
sinoatrial node (SA node) 41
sit-and-reach test 162
percentile ranks for 162
sitting toe touch 164
with partner 164
S.J. See squat jump
skinfold
measurements 182
sites 183
slow static stretching 156-157
slow-twitch 7
(type I) fibers 111
sodium bicarbonate 222-223
soma 6
somatotropins 22
specific endurance 141
specificity 94, 150
principle 72, 111
specific preparation 132
speed 78, 94, 178-179
development of, 101-102
endurance drills for 100
spinal twist, 166
spread eagle 164
sprinter training programs
400-m speed-endurance 100
100-m and 200-m 99
400-m speed-endurance 100
resistance training and 129
sprinting
interval 100
mechanics of 104
NCAA collegiate athletic standards 179
squat jump (SJ) 146
stacking regimen 216
staleness 262
standard atmosphere model 248
starch 188
static resistance training 82
stem cells 58
steroids 17
sticking point 82
resistance training (continued)
exercise intensity 79-80
order 79
cancellation 79
flexibility and 89
frequency 81
integration with plyometric training 151
kicking 88
modes of 82-84
needs analysis 78
number of sets 80
performance and agility 88
sprint 87-88
program 89-91
bodybuilding 90
circuit 91
development 78-82
in-season 75f
maximal strength 90
muscle toning 91
rest period 80
sprint training and 129
swimming 88
throwing 88
volume 80
women and 89
respiratory adaptations 54
respiratory alkalosis 250
respiratory rate 54-55
respiratory system 44-46
anatomy of 44f
rest 151
resting membrane potential 6
resting metabolic rate (RMR) 128
reversibility principle 75
RMR. See repeated maximum
RMR. See resting metabolic rate
rolling sprints 101, 101f
ROM. See range of motion
RPE. See rating of perceived exertion
running economy in 113f
mechanics of 103f
s
saltatory conduction 6
SA node. See sinoatrial node
SaO2. See arterial saturation
sarcosomes 4
unit 5f
sarcoplasmic reticulum 5
transverse tubules 7f
satellite cells 13
SDH. See succinate dehydrogenase
sea level, training at 256-257
secretory apparatus 16
selenium 191
semilunar valves 40
semistriated exercise 163-164
sequence of training 125-126
Seyla, Hans 132
shivering 238
shoulder exercises 166
flexor stretch 167
side shuffles 105
sinoatrial node (SA node) 41
sit-and-reach test 162f
percentile ranks for 162f
sitting toe touch 164
with partner 164
Sj. See squat jump
skinfold
measurements 182
sites 183f
slow static stretching 156-157
slow-twitch 7 (type i) fibers 111
sodium bicarbonate 222-223
soma 6
somatotrophs 22
specific endurance 141
specificity 94, 150
principle 72, 111
specific preparation 132
speed 78, 94, 178-179
development of 101-102
endurance drills for 100
spinal twist, 166
spread eagle 164
sprinter training programs 100-m and 200-m 99f
400-m speed-endurance 100f
resistance training and 129
sprinting
interval 100
mechanics of 104f
NCAA collegiate athletic standards 179f
squat jump (Sj) 146
stacking regimen 216
staticness 262
standard atmosphere model 248
starch 188
static resistance training 82
stem cells 58
steroids 17
sticking point 82
straddle exercise 164
with partner 164
strength 84-86
concurrent training and endurance 78f
muscle temperature and 243
NCAA collegiate athlete standards 173f
in periodized training program 133
tests for 171-173
strength/power 133
athletes compared to endurance athletes 263-264
flexibility and production 161-163
sports 262
strength training
endurance, effect on performance 125f
integrated with plyometric training 151-153
programs 144
improvements 85f
stretching techniques
benefits and risks of 157
types of 157-158
stretch reflex 156
stretch exercises
aerobic 163
back 166
ballistic movement 157-158
butterfly 164
external rotator 167
flexor 167
hamstringing 158f
hurdler 165
neck 167
partner 163, 166
pectoralis 166
shortening 144
shoulder 166
slow static 156-157
stiffness 101, 113
changes with running velocity 102f
stiffness rate 101, 113
changes with running velocity 102f
stroke volume (SV) 41, 52-53, 203, 251f
acute exercise and 48-49
exercise intensity and 47f
subacute hypothermia 244
submaximal treadmill protocol 178f
substrate utilization, exercise duration and 196f
sucinate dehydrogenase (SDH) 33, 112
activity 34f
concentration changes 34f
sucrose 188
supercompensation 262
superficial frostbite 244
superior vena cava 43
super setting 79
supplementation 212
support phase 101
SV. See stroke volume
sweating 239
rate 229
sympathetic nervous system 42, 264
tsynes 6
synergistic muscle group 144
synergists 10
systemic circulation 40
systole 40
systolic blood pressure 43
T
tachycardia 42
tapering 134
T cells 58, 60
T-drill 105
tendons 4, 156
tension development 156
terminal cisternae 5
test order 184
testosterone 17-20, 216
concentrations of 128
overtraining and 266
precursors 220
response to 20f
thermal balance
body composition and 240
exercise and 239-240
thermal expenditure theory 286
thermal homeostasis 238
thermogenesis 239
thermoregulation 202
fatigue 239
lag 240
system 228
torax 44
thyroid gland 24
thyroid hormones 24
thyroxine (T4) 24
tidal volume 51
time to fatigue 122
TNF. See tumor necrosis factor
torque 171
trace elements 192
trachea 44
tracheobronchial tree 265
training
bi-cycle, tri-cycle, and multi-cycle plans 140
curves, 74f
tconnexion 113-114
intensity 18, 114-116, 150-151
training (continued)
phases of year 132
status 170
volume 18,116
reduced 272t
transamimation 197
transitional phase 132
treadmill protocol, submaximal 178f
trich 5
triceps exercises 167
tricuspid valve 40
triglycerides 22, 25, 188
synthesis 274
triiodothyronine (T3) 24
trophils 58
tropomyosin 5
troponin 5
-tropomyosin complex 5
T-test 180f
tumor necrosis factor (TNF) 80
twitch, fast vs. slow 170
unloading phases 134
upper respiratory tract infections (URTI) 66-67, 269
up-regulation 17, 280
URTI. See upper respiratory tract infections
useful consciousness 250
vagus nerves 42
Valsalva 50
variable resistance training 83
vascular system 43
vasculature 43
vasoconstriction 238
vasodilation 228
velocity 78, 144
venous return 229
venous system 43
ventilation 45, 249
-perfusion inequality 253
ventilatory equivalent 51, 54-55
ventilatory response 251f
ventricle 40
fibrillation 244
mass, left 54
wall 53-54
vessels 43
vital capacity 54, 284
vitamins 185, 189-192
fat-soluble 189
functions and requirements 190-191
water-soluble 189
VO2. See oxygen consumption
VO2 max. See aerobic capacity
volume 72
preseason anaerobic conditioning 95
pressure, temperature, and 248
of training 132, 150, 262
W
WAnT. See Wingate Anaerobic Test
Warm-up 156
water 188, 194
balance 202-203
temperature effect 209f
WBGT. See wet bulb globe temperature
weight loss, concurrent training and 128-129
wet bulb globe temperature (WBGT) 235-236
windchill 236
chart 238f
window of adaptation 148, 148f
Wingate Anaerobic Test (WAnT) 174f
protocol 174
woman
resistance training and 89
training effects on sedentary 67f
work/rest ratio 94
YMCA submaximal cycle ergometer test 179f
Z
Zig-zag drill 105
agility 106f
Z line 4