6TH EDITION

GAS TURBINE THEORY

HIH Saravanamuttoo
Professor Emeritus, Department of Mechanical and Aerospace Engineering, Carleton University

GFC Rogers
Lately Professor Emeritus, University of Bristol

H Cohen
Lately Fellow, Queens' College, Cambridge

PV Straznicky
Professor, Department of Mechanical and Aerospace Engineering, Carleton University
Contents

Foreword vii
Prefaces viii
Publisher's Acknowledgements xvii

1. **Introduction** 1
 1.1 Open-cycle single-shaft and twin-shaft arrangements 5
 1.2 Multi-spool arrangements 9
 1.3 Closed cycles 10
 1.4 Aircraft propulsion 12
 1.5 Industrial applications 20
 1.6 Marine and land transportation 29
 1.7 Environmental issues 34
 1.8 Some future possibilities 36
 1.9 Gas turbine design procedure 40

2. **Shaft power cycles** 46
 2.1 Ideal cycles 46
 2.2 Methods of accounting for component losses 54
 2.3 Design point performance calculations 75
 2.4 Comparative performance of practical cycles 84
 2.5 Combined cycles and cogeneration schemes 89
 2.6 Closed-cycle gas turbines 94

3. **Gas turbine cycles for aircraft propulsion** 100
 3.1 Criteria of performance 101
 3.2 Intake and propelling nozzle efficiencies 105
 3.3 Simple turbojet cycle 114
 3.4 The turbofan engine 123
 3.5 The turboprop engine 139
 3.6 The turboshaft engine 142
 3.7 Auxiliary power units 143
 3.8 Thrust augmentation 147
 3.9 Miscellaneous topics 150
4 Centrifugal compressors 157
 4.1 Principle of operation 158
 4.2 Work done and pressure rise 160
 4.3 The diffuser 168
 4.4 Compressibility effects 173
 4.5 Non-dimensional quantities for plotting compressor characteristics 178
 4.6 Compressor characteristics 181
 4.7 Computerized design procedures 185

5 Axial flow compressors 187
 5.1 Basic operation 188
 5.2 Elementary theory 191
 5.3 Factors affecting stage pressure ratio 194
 5.4 Blockage in the compressor annulus 199
 5.5 Degree of reaction 201
 5.6 Three-dimensional flow 204
 5.7 Design process 213
 5.8 Blade design 234
 5.9 Calculation of stage performance 245
 5.10 Compressibility effects 254
 5.11 Off-design performance 259
 5.12 Axial compressor characteristics 263
 5.13 Closure 270

6 Combustion systems 272
 6.1 Operational requirements 273
 6.2 Types of combustion system 274
 6.3 Some important factors affecting combustor design 277
 6.4 The combustion process 278
 6.5 Combustion chamber performance 283
 6.6 Some practical problems 292
 6.7 Gas turbine emissions 299
 6.8 Coal gasification 311

7 Axial and radial flow turbines 315
 7.1 Elementary theory of axial flow turbine 316
 7.2 Vortex theory 334
 7.3 Choice of blade profile, pitch and chord 341
 7.4 Estimation of stage performance 354
 7.5 Overall turbine performance 364
 7.6 The cooled turbine 366
 7.7 The radial flow turbine 376

8 Mechanical design of gas turbines 385
 8.1 Design process 386
CONTENTS

8.2 Gas turbine architecture 388
8.3 Loads and failure modes 390
8.4 Gas turbine materials 392
8.5 Design against failure and life estimations 412
8.6 Blades 417
8.7 Bladed rotor discs 428
8.8 Blade and disc vibration 434
8.9 Engine vibration 440
8.10 Other components 445
8.11 Closure 451

9 Prediction of performance of simple gas turbines 453
9.1 Component characteristics 456
9.2 Off-design operation of the single-shaft gas turbine 457
9.3 Equilibrium running of a gas generator 463
9.4 Off-design operation of free turbine engine 466
9.5 Off-design operation of the jet engine 477
9.6 Methods of displacing the equilibrium running line 486
9.7 Incorporation of variable pressure losses 489
9.8 Power extraction 490

10 Prediction of performance—further topics 492
10.1 Methods of improving part-load performance 492
10.2 Matching procedures for twin-spool engines 497
10.3 Some notes on the behaviour of twin-spool engines 502
10.4 Matching procedures for turbofan engines 506
10.5 Transient behaviour of gas turbines 508
10.6 Performance deterioration 516
10.7 Principles of control systems 520

Appendix A Some notes on gas dynamics 525
A.1 Compressibility effects (qualitative treatment) 525
A.2 Basic equations for steady one-dimensional compressible flow of a perfect gas in a duct 530
A.3 Isentropic flow in a duct of varying area 533
A.4 Frictionless flow in a constant area duct with heat transfer 534
A.5 Adiabatic flow in a constant area duct with friction 536
A.6 Plane normal shock waves 538
A.7 Oblique shock waves 543
A.8 Isentropic two-dimensional supersonic expansion and compression 547

Appendix B Problems 549
Appendix C References 568
Index 580
Index

6Theta model, 397
Abrasiver cleaning, 519
Aero-derivative engines, 309, 389
Aerodynamic coupling, 268, 498, 502
Afterburning, 109, 130, 147
pressure loss, 149
Aft-fan, 137
Ainsley-Mathieson method, 363, 364
Air angles, 193, 216, 224, 225, 234
Air cooling, 55, 292, 366
Air separation unit, 311
Air/fuel ratio see Fuel/air ratio
Aircraft
 design, civil and military, 388
gas turbines, 12, 100, 308
propulsion cycles, 100
Altitude, effect on performance, 118, 120, 273, 481, 484
Ambient conditions, effect of, 454, 484
Annular combustion chamber, 17, 276, 284
Annulus
 contraction, 224
drag, 248
loss, 341, 359
radius ratio, 195, 204, 214, 329, 332
Applications, industrial, 20
Architecture, 388
Aspect ratio, 240, 345
Atomization, 293
Auxiliary power unit, 143, 315
Axial compressor, 9, 187
 blading, 188, 234, 242
characteristics, 263, 456, 486
stage, 188, 191
surging in, 260, 263, 264
variable stators, 189, 268
vortex flow in, 204
Axial flow turbine, 315
 blade profile, 341, 342, 348
characteristics, 364, 456, 464
choking, 365, 464, 468
cooling, 366
free power, 6, 77, 513
multi-stage, 316, 327, 369
stage, 317
stage efficiency, 318, 326, 362
variable-area stators, 495
Backswept vanes, 160, 167
Bearings, 445
Bending-torsion coupled flutter, 438
Biconvex blading, 190, 256
Bilinear approximation, 415
Binary cycle see Combined power plant
Bird strike, 440
Blade
 aspect ratio, 240, 345, 355
 attachments, 424
camber, 237, 242
cascade, 235
chord, 197, 237, 344
compressor, 406
INDEX

Blade, cont.
 cooling, 427
 efficiency, 250
 fan, 258
 flutter, 437
 loading, 439
 loading coefficient, 319, 369
 loss coefficient, 245, 247, 248, 254, 324, 341, 357, 361
 materials, 408
 pitch, 197, 237, 344, 347
 pressure distribution, 349
 profile, 243, 255, 341, 342, 348
 relative temperature, 368, 372
 root, 347
 stagger, 237, 243
 stress calculations, 417
 stresses, 194, 346, 344, 354
 taper, 195, 346
 tilt, 424
 tip clearance, 248, 341, 359
 velocity distribution, 198, 349, 350
 vibration, 434
 Bladed rotor disc, 428

Blading design 417
 constant nozzle angle, 339
 constant reaction, 213, 230, 233
 exponential, 211, 231, 233
 first power, 210
 free vortex, 207, 226, 232, 334
 Bleed flows, 72
 Bleed valve, 144
 Bleeds, cooling 54, 72, 369
 Blow-off, 267, 460, 486
 Booster stage, 138
 Boundary layer, 236, 341
 separation, 349, 529
 transition, 349, 372
 Brush seals, 450
 Building block approach, 386

Burner
 double-cone, 307, 308
 dual-fuel, 295, 306
 duplex, 294
 hybrid, 307
 Burner, cont.
 simplex, 294
 spill, 295
 Bypass
 engine see Turbofan
 ratio, 123, 131, 132
 Camber
 angle, 237, 242
 line, 242, 243
 Campbell (interference) diagram, 435, 438
 Carbon formation, 277
 Cascade
 notation, 237
 of blades, 235
 pressure loss, 238
 test results, 239
 tunnel, 235
 Centrifugal bending stress, 346
 Centrifugal blade stresses, 418
 Centrifugal compressor, 17, 158
 rotor, stress state, 433
 surging, 182
 Centrifugal disc stresses, 355
 Centrifugal stiffening, 435
 Centrifugal tensile stress, 194, 346, 354, 355
 Centrifugal untwisting, 424
 Ceramic matrix composites, 411
 Ceramic, rotor, 376
 combustor lining, 36

Characteristics
 axial compressor, 263, 456, 488
 centrifugal compressor, 181
 load, 459
 power turbine, 456, 464
 propelling nozzle, 477, 487
 torque, 473
 turbine, 364, 456, 467
 Chilling of flame, 279, 281
 Choke flutter, 438
 Choking
 in axial compressor, 263, 266
 in centrifugal compressor, 183

Ressor, 9, 187
188, 234, 242
istics, 263, 456, 486
3, 191
1, 260, 263, 264
itators, 189, 268
ow in, 204
turbine, 315
ofile, 341, 342, 348
istics, 364, 456, 464
365, 464, 468
366
or, 6, 77, 513
e, 316, 327, 369

vanes, 160, 167
45
ision coupled flutter, 438
ading, 190, 256
roximation, 415
see Combined power
440
1, 240, 345, 355
nts, 424
37, 242
235
7, 237, 344
or, 406
Choking, cont.
 in duct, 532
 in propelling nozzle, 112, 478
 in turbine, 365, 464, 498
Chord, 198, 237, 344
Circular arc blading, 190, 242, 256
Classical bending-torsion coupled flutter, 438
Climb rating, 483
Closed cycle, 4, 10, 94, 311
Coal gasification, 38, 299, 311
Coatings, 409
Coefficient
 annulus drag, 247
 blade loading, 319, 369
 blade loss, 245, 247, 248, 254, 324, 341, 357, 361
 flow, 260, 319, 369
 heat transfer, 95, 372
 lift, 245, 247, 358
 nozzle loss, 324, 358, 359, 379
 overall drag, 249
 pressure, 261
 profile drag, 245, 358
 profile loss, 341, 357, 362
 rotor loss, 379
 secondary loss, 248, 359
 temperature drop, 319, 369
Cogeneration plant (CHP), 4, 27, 90, 92
Cold loss, 282
Combined cycle plant, 4, 27, 38, 89, 90
Combustion
 efficiency, 70, 286
 emissions, 299
 fluidized bed, 36
 intensity, 290, 292
 mixing in, 278, 283
 noise, 310
 pressure loss, 62, 281, 284, 285
 process, 278
 sequential (see also Reheat), 7, 40, 82, 88, 497
 stability, 280, 289
Combustor (combustion chamber), 407
 annular, 17, 276, 284
 can (or tubular), 17, 275, 284
 cannular (or tubo-annular), 276, 284
 dry low-NOx, 305
 emissions, 299
 flame tube, 279, 292
 industrial, 276, 286, 306
 reverse flow, 17, 276
 silo, 276
Common core, 150
Complex cycles, 7, 89, 493
Component failure modes, 391
Compressed air storage, 39
Compressibility effects, 525
 in axial compressors, 196, 254
 in centrifugal compressors, 169
 in turbines, 328
Compressor
 axial, 10, 187
 blades, 406
 discs, 407
 fouling, 517
 centrifugal, 157
 characteristics, 181, 263, 456, 488
 cleaning, 519
 supersonic and transonic, 187, 190, 256
 test rigs, 265
 twin-spool, 8, 267
 vanes, 406
 variable stators, 189, 268
 washing, 519
Concurrent engineering, 40
Conservation equations, 530
Constant mass flow design, 340
Constant nozzle angle design, 339
Constant pressure cycle, 3, 47
 intercooling, 7, 53, 88
 reheating, 7, 51, 80, 88
 with heat exchange, 6, 49, 74, 85
Constant reaction blading, 233
Constant reaction design, 213, 230
INDEX

Constant volume cycle, 3
Control systems, 301, 520
Convective air cooling, 292, 366
Conventional blading, 342
Convergent–divergent nozzle, 110, 327, 527
Cooled turbine, 366
Core, 150
Corrosion, 517
Counter-rotation, 323
Creep, 394, 402, 422
resistance, 404
Critical pressure ratio, 110, 112, 327, 329, 478
Mach number in cascade, 254
Critical speed, 441, 442
Cruise rating, 483
Cycle
aircraft propulsion, 100, 105, 114, 117, 120
closed, 4, 10, 94
complex, 7, 89, 493
constant pressure, 3, 47
constant volume, 3
efficiency, 48, 54, 69, 80
heat-exchange, 49, 52, 74, 85
ideal, 46
intercooled, 8, 53, 88
Joule, 47
open, 3, 47
reheat, 51, 80, 88
simple, 47, 84
shaft power, 46
turbofan, 17, 123, 130
turbojet, 12, 101, 114, 117
turboprop, 14, 139
turboshaft, 14, 142
Damage tolerance, 412, 415
Dampers, part span, 258
de Haller number, 197, 218, 219, 220, 221, 222, 223, 224, 244
Deflection, 197, 238, 239
nominal, 239
Degree of reaction see Reaction
Design point performance, 74, 453
heat-exchange cycle, 74, 85
intercooled cycle, 88
reheat cycle, 80, 88
turbofan cycle, 124, 131
turbojet cycle, 114, 117
Development timelines, 387
Deviation angle, 239, 241
Diffuser, 158, 165, 167, 168
vanes, 169, 183
volute, 170
Diffusion factor, 197, 198
Dilution zone, 279
Dimensional analysis, 179
Disc
attachments, 424
compressors, 407
materials, 408
vibration, 434
Dovetail attachment, 426
Drag
coefficient, 245, 249
annulus, 249
profile, 245, 358
secondary loss, 248
Drag
momentum, 101, 118, 119, 135, 149
pod, 134, 135
Dual-fuel operation, 274
Ductility, 393
Ductility exhaustion, 415
Dunham–Came correlations, 364
Duplex burner, 294
Dwell, 402
Dynamic head, 63, 282
temperature, 55, 287
Dynamic seals, 449
Effectiveness of heat-exchanger, 64, 86, 96
Efficiency
blade, 250
combustion, 69, 286
compressor and turbine, 57, 58
Efficiency, cont.
compressor blade row, 249
cycle, 48, 54, 69, 80
Froude, 102
intake, 107
isentropic, 57, 58
mechanical transmission, 66
nozzle, 112
overall, 102
part-load, 5, 454, 471, 492
polytropic, 59, 80, 253, 364
propelling nozzle, 112
propulsion, 101
stage, 250, 251, 318, 326, 362
total-to-static, 318, 379
total-to-total, 318
Effusion cooling see Transpiration cooling
Electrical power generation, 26, 90, 454, 472, 477, 513
Emissions, 299
End bend blading, 270
Engine braking, 497
Engine casings, 408
Engine health monitoring, 522
Engine orders, 436
Engine pressure ratio, 123, 130
Engine vibration, 440, 444
Engineering stress, 393
Environmental issues, 34
Equilibrium running diagram, 453
gas generator, 463
shaft power unit, 460, 466
turbojet unit, 481
twin-spool unit, 503
Equilibrium running line, 453, 460, 466, 486, 503
Equivalent
flow, 185
power, 140
speed, 185
Erosion, 517
Evaporative cooling, 477
Exhaust gas temperature (EGT), 289
Exponential blading, 211, 231, 233
Eye of impeller, 158, 160, 162, 164, 174
Failure
design against, 412
modes, 391
Fan, blade, 258
pressure ratio, 124, 130, 131, 132
Fanno flow, 536, 541
Finite element methods (FEM), 431
Fir tree
attachment, 426
root, 347
First power designs, 210
Flame
chilling of, 279, 281
stabilization, 280
temperature, 302, 312
tube, 276, 292
Flat rating, 523
Flow
coefficient, 260, 319, 369
steady one-dimensional, 530
Fluidized bed combustor, 36
Flutter, 437
choke, 438
design against, 439
Fog cooling, 477
Foreign object damage, 241, 259
Fracture toughness, 416
Free turbine, 6, 77, 455, 466, 512
Free vortex blading, 208, 226, 229, 336
Free vortex condition, 207
Fretting, 399
Froude efficiency, 102
Fuel
atomization, 293
burner, 293, 306
consumption, non-dimensional, 484
injection, 293
staging, 306, 309
Fuel/air ratio, 67, 277, 286, 289, 461
INDEX

INDEX

Fuels, 298
Full Authority Digital Engine Controls (FADECs), 521
Fundamental pressure loss 281, 284, 536
Gas
angles, 316
bending, 420
bending stress, 346, 355
dynamics, 525
generator, 6, 455, 463
Gas and steam cycle, 5, 27, 89
Gasification plant, 38, 311
Greenhouse gases, 35, 300
Gross momentum thrust, 101
Heat recovery steam generator, 4, 65, 90, 92, 270
Heat
rate, 72
release, 290
transfer coefficient, 95, 372
Heat-exchanger, 6, 7, 20, 49, 64, 74, 85, 95
effectiveness, 64, 85, 95
pressure loss, 63, 95
Helium working fluid, 11, 95
High-cycle fatigue, 397
Hot corrosion, 402
Hub-tip ratio, 194, 196, 204, 214, 329, 424
Humming, 310
Hydrodynamic bearings, 448
Ice harvesting, 477
Ideal cycle, 46
heat-exchange, 49
intercooling, 53
reheat, 51
reheat and heat-exchange, 52
simple constant pressure, 47
turbojet, 105
Ignition, 295
Impeller, 159
centrifugal stresses, 163
eye, 158, 160, 162, 164
loss, 166
vane inlet angle, 160, 163, 169
vibration, 178, 182
Incidence, 237, 239, 254, 342
Inconel, 408
Indication of thrust, 121, 136
Industrial gas turbine, 20, 390
Inertial separators, 517
Inlet guide vanes, 136, 169, 175, 189, 195, 196, 242, 497
Intake, efficiency, 107
momentum drag, 101, 118, 119, 135, 149
momentum thrust, 101
Oswatitsch, 546
pitot, 541
pressure recovery factor, 109
variable geometry, 546
Integer order, 434
Integrally bladed rotor, 259
Integrated product development (IPD), 386
Inter turbine temperature (ITT), 289
Intercooling, 7, 53, 88
Interference diagram, 435, 438
Internal constraint, 427
International Standard Atmosphere, 103, 155
Isentropic efficiency, 57, 58
flow, 533, 547
Jeffercott rotor, 442
Jet pipe, 109, 114
temperature, 289, 520
Joule cycle, 47
Kacker–Okapuu modifications, 364
Knife edges, 450
Labyrinth seals, 450
Lamilloy, 411
Multi-spool, 9
Multi-stage turbine, 364

Nacelle, 134
Negative incidence stall, 438
Noise, 111, 135, 141, 150, 189
Nominal deflection, 239
Non-dimensional quantities, 178
 fuel consumption, 484
 pressure loss, 63, 283, 286
 thrust, 480
Non-integer order, 434
Non-steady-state stresses, 385
Normal shock, 528, 538, 540
Notch sensitivity, 399
Nozzle
 characteristics, 477, 487
 convergent-divergent, 110, 327, 527
 efficiency, 112
 loss coefficient, 324, 357, 359, 379
turbine, 316, 324, 328, 368
 see also Propelling nozzle
Nusselt number, 96, 372

Oblique shock wave, 528, 543
Off-design performance, 259, 453
 free turbine engine, 466, 470
 single-shaft engine, 457
turbofan, 506
turbojet, 477
twin-spool engine, 497, 502, 515
Open cycle, 3, 47
Open rotor, 139
Oswatitsch intake, 546
Overall efficiency, 102
Overall pressure ratio, 132
Oxidation, 402
Oxide dispersion strengthened, 411

Parabolic taper, 419
Paris law, 416
Part-load
 efficiency, 454, 471, 492
 performance, 5, 454, 470, 492, 495
INDEX

Part-span dampers, 258
Peak-load generation, 6, 25, 40
Pebble bed modular reactor (PBMR), 98
Performance deterioration, 516
Pin attachments, 424
Pipelines, 25, 65
Pitch, 197, 237, 344, 347
Pitch/chord ratio, 239, 248, 344, 348
Pitot intake, 541
Plane normal shock wave, 528, 538, 540
 efficiency, 541
 pressure ratio, 539
Pod drag, 134, 135
Podded engines, 106
Pollution, 35, 300, 302
Polytropic efficiency, 59, 80, 253, 364
Power extraction, 490
Power input factor, 161
Power turbine see Free turbine
Prandtl number, 96
Prandtl-Meyer flow, 547
Preload, 449
Pressure
 coefficient, 261
 ratio, critical, 110, 113, 329, 478
 ratio, engine, 123, 130
 ratio, fan, 124, 130, 131, 132
 ratio, overall, 132
 ratio, ram, 123
 recovery factor, 109
 thrust, 101, 110
Pressure loss
 in cascade, 238
 in combustion system, 62, 281, 286
 in cycle calculations, 62, 489
 factor, 284
 fundamental, 281, 536
 variable, 489
Prewirl, 174, 175
Primary creep, 394
Primary zone, 279
Profile
 blade, 243, 255, 341, 348
 drag coefficient, 245, 358
 loss coefficient, 341, 357, 362
Propeller turbine engine, 17, 139, 513
Propelling nozzle, 109
 characteristics, 477, 487
 choking, 112, 478, 479
 convergent v, conv.-div., 111
 efficiency, 112
 mixing in, 129
 trimmer, 114
 variable area, 111, 149, 487, 499, 503
Propulsion efficiency, 101
Radial
 equilibrium, 205, 206, 213, 335
 low compressor see Centrifugal compressor
 flow turbine 376
 stress, 428
 Radius ratio of annulus, 195, 204, 214, 329
Ram
 compression, 107, 119
 efficiency, 107
 pressure ratio, 123
 pressure rise, 107
Rayleigh flow, 535, 541
Reaction, degree of
 in compressor, 201, 208, 220
 in turbine, 319, 328, 335
Regenerative cycle see Cycle, heat-exchange
Regenerator, 8, 39
Reheating, 7, 51, 81, 88
Relative Miner, 414
Repeating stage, 316
Repowering, 93
Residence time, 302
Resonant vibration, 434
Response amplitudes, 436
Response rate, 508
Retirement-for-cause, 415
Reynolds number effect, 96, 179, 265, 363, 372
Rhenium, 406
Rig testing, 265
Rigid bearing critical speed, 441
Robinson's rule, 415
Rolling element bearings, 445, 447
Rotating stall, 183, 238
Rotor
back-to-back 377
blade loss coefficient, 325, 355, 361
ceramic, 376
Jeffcott, 442
loss coefficient, 379
open, 139
tilt, 143
Ruthenium, 406
Safe-life, 412
Sauter mean diameter, 294
Seals, 449
Secondary
creep, 394
losses, 248, 341, 359
zone, 279
Selective catalytic reduction, 304
Separation of boundary layer, 349, 529
Sequential combustion (see also Reheat), 7, 40, 82, 88, 497
Shaft power cycles, 46
Shaft power, 5
Shock losses, 170, 178, 256
Shock wave, 174, 527
diffusion by, 541
efficiency, 541, 545
in centrifugal compressor, 174, 178
in turbine, 327, 330
oblique, 528, 543
on aerofoil, 529
plane normal, 528, 538
Simplex burner, 294
Single-shaft engine, 5, 457, 472, 512
Site rating, 93
Slip factor, 161
Smith Chart 322
Solidity, 162, 199, 256
Sonic velocity, 107, 525
Spalling, 410
Specific
fuel consumption, 54, 84, 103, 117, 461, 470, 484, 493
heat, variation of, 66
thrust, 103, 117, 119
work output, 48
Spill burner, 295
Spray cooling, 366
Spray intercooling, 505
Stability of combustion, 280, 289
Stage
axial compressor, 188, 191
efficiency, 250, 251, 318, 326, 362
repeating, 316
stacking, 262
turbine, 316
Stagger angle, 237, 243
Stagnation
enthalpy, 55
pressure, 56, 228, 531
temperature, 55, 164, 286, 531
thermocouple, 287
Stainless steels, 404
Stalling, 183, 189, 238, 262, 264
Starting, 295, 512
Static density, 439
Static failure, 392, 439
Static pressure, 228
Static seals, 449
Static strength, 392
Station numbering 104
Stator blades, 188, 316
Steady one-dimensional flow, 530
Steady-state stresses, 385
Steam cooling, 368
Steam injection, 35, 304
<table>
<thead>
<tr>
<th>INDEX</th>
<th>589</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain cycles, 399</td>
<td></td>
</tr>
<tr>
<td>Strain fracture toughness, 416</td>
<td></td>
</tr>
<tr>
<td>Streamline curvature method, 270</td>
<td></td>
</tr>
<tr>
<td>Stress distribution, 437</td>
<td></td>
</tr>
<tr>
<td>Stress intensity, 416</td>
<td></td>
</tr>
<tr>
<td>Stresses</td>
<td></td>
</tr>
<tr>
<td>blade, 194, 346, 346, 354</td>
<td></td>
</tr>
<tr>
<td>disc, 348</td>
<td></td>
</tr>
<tr>
<td>impeller, 163</td>
<td></td>
</tr>
<tr>
<td>Subsonic stall flutter, 438</td>
<td></td>
</tr>
<tr>
<td>Superalloys, 404</td>
<td></td>
</tr>
<tr>
<td>Supersonic</td>
<td></td>
</tr>
<tr>
<td>compressor, 187</td>
<td></td>
</tr>
<tr>
<td>diffusion, 107, 256, 532</td>
<td></td>
</tr>
<tr>
<td>expansion, 327, 532</td>
<td></td>
</tr>
<tr>
<td>stall flutter, 438</td>
<td></td>
</tr>
<tr>
<td>unstalled flutter, 438</td>
<td></td>
</tr>
<tr>
<td>Supplementary firing, 91</td>
<td></td>
</tr>
<tr>
<td>Surface discharge igniter, 297</td>
<td></td>
</tr>
<tr>
<td>Surge line, 184, 263, 453, 461</td>
<td></td>
</tr>
<tr>
<td>Surging, 182, 263, 264, 453, 461, 511</td>
<td></td>
</tr>
<tr>
<td>Swirl, angle, 316, 321</td>
<td></td>
</tr>
<tr>
<td>in combustion, 280</td>
<td></td>
</tr>
<tr>
<td>Swirl vanes, 279</td>
<td></td>
</tr>
<tr>
<td>Symmetrical blading, 203</td>
<td></td>
</tr>
<tr>
<td>System flutter, 439</td>
<td></td>
</tr>
<tr>
<td>Take-off rating, 483</td>
<td></td>
</tr>
<tr>
<td>Tangential stress, 428</td>
<td></td>
</tr>
<tr>
<td>Tantalum, 406</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>coefficient, 260</td>
<td></td>
</tr>
<tr>
<td>drop coefficient, 260</td>
<td></td>
</tr>
<tr>
<td>dynamic, 55, 287</td>
<td></td>
</tr>
<tr>
<td>measurement, 286</td>
<td></td>
</tr>
<tr>
<td>stagnation, 55, 286, 531</td>
<td></td>
</tr>
<tr>
<td>static, 55</td>
<td></td>
</tr>
<tr>
<td>weighted mean, 287</td>
<td></td>
</tr>
<tr>
<td>Tertiary creep, 394</td>
<td></td>
</tr>
<tr>
<td>Tertiary zone, 279</td>
<td></td>
</tr>
<tr>
<td>Thermal barrier coatings, 409</td>
<td></td>
</tr>
<tr>
<td>Thermal choking, 116, 149, 536</td>
<td></td>
</tr>
<tr>
<td>Thermal fatigue, 401</td>
<td></td>
</tr>
<tr>
<td>Thermal strain, 403</td>
<td></td>
</tr>
<tr>
<td>Thermal stresses, 385, 426, 432</td>
<td></td>
</tr>
<tr>
<td>Thermal-ratio see Effectiveness</td>
<td></td>
</tr>
<tr>
<td>Thermocouple, 287, 288, 520</td>
<td></td>
</tr>
<tr>
<td>Thermomechanical fatigue, 402</td>
<td></td>
</tr>
<tr>
<td>Theta projection, 396</td>
<td></td>
</tr>
<tr>
<td>Thickness/chord ratio, 341, 428, 357</td>
<td></td>
</tr>
<tr>
<td>Thrust</td>
<td></td>
</tr>
<tr>
<td>augmentation, 147</td>
<td></td>
</tr>
<tr>
<td>indication of, 121, 136</td>
<td></td>
</tr>
<tr>
<td>moment, 101, 110</td>
<td></td>
</tr>
<tr>
<td>net, 101, 119, 124, 481</td>
<td></td>
</tr>
<tr>
<td>non-dimensional, 481</td>
<td></td>
</tr>
<tr>
<td>power, 139</td>
<td></td>
</tr>
<tr>
<td>pressure, 101, 110</td>
<td></td>
</tr>
<tr>
<td>reverser, 111</td>
<td></td>
</tr>
<tr>
<td>specific, 103, 117, 121</td>
<td></td>
</tr>
<tr>
<td>Tilt</td>
<td></td>
</tr>
<tr>
<td>blade, 424</td>
<td></td>
</tr>
<tr>
<td>rotor, 143</td>
<td></td>
</tr>
<tr>
<td>Tilting-pad bearing, 448</td>
<td></td>
</tr>
<tr>
<td>Time marching method, 270</td>
<td></td>
</tr>
<tr>
<td>Tip clearance</td>
<td></td>
</tr>
<tr>
<td>compressor, 248</td>
<td></td>
</tr>
<tr>
<td>turbine, 341, 359, 369</td>
<td></td>
</tr>
<tr>
<td>Tip speed</td>
<td></td>
</tr>
<tr>
<td>axial compressor, 194</td>
<td></td>
</tr>
<tr>
<td>centrifugal compressor, 160, 163</td>
<td></td>
</tr>
<tr>
<td>Titanium, 404</td>
<td></td>
</tr>
<tr>
<td>Torch igniter, 297</td>
<td></td>
</tr>
<tr>
<td>Torque characteristics, 473</td>
<td></td>
</tr>
<tr>
<td>Torque, net, 509, 512</td>
<td></td>
</tr>
<tr>
<td>Total see Stagnation</td>
<td></td>
</tr>
<tr>
<td>Total-energy see Cogeneration plant</td>
<td></td>
</tr>
<tr>
<td>Total-to-static efficiency, 318, 379</td>
<td></td>
</tr>
<tr>
<td>Total-to-total efficiency, 318</td>
<td></td>
</tr>
<tr>
<td>Transient performance, 508</td>
<td></td>
</tr>
<tr>
<td>Transient running line, 511, 514</td>
<td></td>
</tr>
<tr>
<td>Transonic compressor, 187, 190, 256</td>
<td></td>
</tr>
<tr>
<td>Transonic stall flutter, 438</td>
<td></td>
</tr>
<tr>
<td>Transpiration cooling, 293, 367</td>
<td></td>
</tr>
<tr>
<td>Triple spool, 9</td>
<td></td>
</tr>
<tr>
<td>True stress, 393</td>
<td></td>
</tr>
<tr>
<td>Tubular combustion chamber, 17, 275, 284</td>
<td></td>
</tr>
<tr>
<td>Tungsten, 406</td>
<td></td>
</tr>
</tbody>
</table>
Turbine see Axial flow turbine; Radial flow turbine
Turbofan, 17, 123, 130, 137
design point performance, 123, 130
mixing in nozzle, 129
off-design performance, 506
Turbojet, 12, 101, 114, 117
design point performance, 114, 117
equilibrium running diagram, 481
off-design performance, 481, 484
surging, 504
Turbo prop, 14, 139, 513
Turbo shaft, 14, 142
Twin-shaft engine, 5
see also Free turbine
Twin-spool engine, 9, 267, 497, 502, 514
Ultimate tensile strength, 392
Unducted fan, 141
Universal slopes, 401
Vaneless space, 169, 178
Vanes
compressor, 406
diffuser, 169, 183
impeller, 159, 167, 168
inlet guide, 136, 169, 175, 189, 195, 196, 242
materials, 408
Vaporizer system, 280, 293
Variable
area propelling nozzle, 110, 149, 487, 499, 503
area power turbine stators, 495
compressor stators, 268
cycle engine, 120
globality compressor, 10, 189, 268, 301
globality intake, 546
globality turbine, 495
Variable, cont.
inlet guide vanes 189, 307
pitch fan, 141
stator blade, 10
Vectored thrust, 152
Vehicular gas turbine, 33, 474, 493
Velocity diagram, axial compressor, 192, 198
turbine, 316, 317
Vibration
blade, 434
compressor blade, 241
eye, 440
fan blade, 258
impeller vane, 178, 182
turbine blade, 328, 345
Vibratory mode shape, 439
Vibratory stresses, 385, 397
Volute, 170
Von Mises theory, 401
Vortex blading, 334
Vortex energy equation, 207
Vortex flow
in compressor, 204
in turbine, 334
Waste heat boiler, 4
see also Heat recovery steam generator
Water injection, 35, 304
Water jets, 32
Weighted mean temperature, 287
Whipping, 445
Whirling, 445
Windage loss, 66, 161
Work done factor, 200
Yawmeter, 236, 237
Yield strength, 392
Young’s modulus, 393
Zero stage, 269