The material presented herein is based on information contained in available literature, developed by The Lincoln Electric Company, or provided by other parties and is believed to be correct. However, the publisher does not assume responsibility or liability for any applications or installations produced from the design, products, processes, techniques, or data set forth in this book.

This book may be ordered from any dealer or representative of The Lincoln Electric Company, or through any recognized book dealer in the world or direct from

THE LINCOLN ELECTRIC COMPANY
22801 St. Clair Avenue
Cleveland, Ohio 44117

LINCOLN ELECTRIC COMPANY OF CANADA, LTD.
179 WICKSTEED AVE., TORONTO 17, ONTARIO, CANADA

THE LINCOLN ELECTRIC CO. (Europe) S.A.
BOULEVARD de STALINGRAD, 76120 GRAND-QUEVILLY, FRANCE

LINCOLN ELECTRIC COMPANY (Australia)
35 BRYANT STREET, PADSTOW, N.S.W., 2211, AUSTRALIA

EXPORT REPRESENTATIVES
International Division Armco Steel Corporation
Post Office Box 700, Middletown, Ohio 45042, U.S.A.
ACKNOWLEDGMENTS

The publisher acknowledges with thanks the contributions and cooperation of the following individuals and concerns who have aided in the preparation of this and previous editions with information and photographs:

American Institute of Steel Construction
American Iron and Steel Institute
American Petroleum Institute
American Society of Mechanical Engineers
American Society for Metals
Metals Handbook
METAL PROGRESS
American Society for Testing and Materials — ASTM Standards
American Welding Society
Codes, Standards and Specifications
Welding Handbook
WELDING JOURNAL
Welding Metallurgy, George E. Linnert
Arcair Company
Bethlehem Steel Corporation
British Standard Institution
British Welding Association — Welding Processes, P.T. Houldcroft
Bureau of Ships, Navy Department
Hobart Brothers Technical Center
Industrial Publishing Company — Welding Data Book
Jefferson Publications, Inc. — WELDING ENGINEER
Kaiser Aluminum and Chemical Corp., Inc.
The James F. Lincoln Arc Welding Foundation
Linde Division, Union Carbide Corporation
Miller Electric Manufacturing Company
National Aeronautics and Space Administration
National Cylinder Gas Division of Chemetron Corporation
Penton Publishing Company — MACHINE DESIGN
Republic Steel Corporation — Republic Alloy Steels
Steel Foundry Research Foundation
Tool and Manufacturing Engineers

Special acknowledgment is made to Emmett A. Smith, Robert A. Wilson, Omer W. Blodgett, Jerry Hinkel, Robert E. Greenlee, Jesse Guardado and Ted Bullard for their technical expertise and professional assistance.

The publisher regrets any omissions from this list which may occur, and would appreciate being advised about them so that the records can be corrected.
PARALLELING ARC WELDERS

What is Paralleling?
Paralleling consists of connecting the output of two, three, or more arc welding machines of the same model in parallel so that the total available rated output equals the sum of the rated output of each machine at rated duty cycle.

Why Paralleling?
Machines are paralleled for two primary reasons: 1. For high current application when power sources of sufficient size are not readily available. 2. To utilize existing power sources for operations which require higher output than the rating of any one available machine.

Applications utilizing paralleled welders include automatic and semiautomatic welding, stud welding, arc gouging, resistance heating, high current manual welding and others.

Basic Requirements for Paralleling
1. Since improper paralleling or improper operation of paralleled machines can cause serious damage, the specific instructions for the equipment involved MUST be accurately and completely followed.
2. Welders to be paralleled must be the same size and model and must operate on the same input volts and frequency.
3. The control settings for each machine must be set for the same output so the current draw from each machine is the same.

REQUEST FOR PARALLELING ASSISTANCE (Suggested Form)

Company:

Required Output Current, Voltage and Operating Factor

Purpose: [] Automatic welding - Process [] Submerged Arc; [] Innersheath; or [] Other:

Wire Feeders [] LAF-3; [] LAF-4; [] LAF-5; [] LT-34; [] NA-2; or [] Other:

[] Semiautomatic Welding - Process:

Wire Feeders [] LN-6; [] Other:

[] Stick Electrode Welding; [] Stud Welding; [] Arc Gouging; [] Resistance Heating

[] Other:

Number of power sources to be paralleled

Description of Lincoln power sources to be paralleled:

<table>
<thead>
<tr>
<th>Input volts/phertz</th>
<th>Machine No. 1</th>
<th>Machine No. 2</th>
<th>Machine No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Connect "like" output terminals (example: connect "Work" to "Work" and "Min to 525" to "Min to 525") together using equal lengths of welding cable. Use the size cable recommended for the rated output current and duty cycle of the welder. Interconnect motor-generator and engine welders per instructions on the specific connection diagram for the models being used. When they are to be connected to a wire feeder, the paralleled power sources must be interconnected with the wire feeder per the appropriate connection diagram available from the manufacturer. (See sample request form below.)
Redesign
by equivalent sections...
by nomography...
Repair welding...
Reinforcing bars, welding...
Resistance welding...
Resistance:
conversion via nomographs...
designing for...
Equivalent rigidity factors.
Rockwell hardness measuring
Rigidity
Resistance welding
Resistance heating
Semiautomatic welding
Semiautomatic steels
Sheet metal
Sheet metal
Shielding, arc...
Shielding, arc...
Shear...
Ultimate energy resistance 1.2-5
Ultrosone inspection 11.1-14, 16
Underbed cracking (see Cracking) 6.2-16; 11.1-4, 5
Undercut 13.1-4
Ungymmetrical beams 3.1-10, 11

Voltage
constant 4.2-2, 6.3-22
variable 4.2-2, 5, 6.4-11, 13.3-4

Effect of variations 6.3-3-5; 6.4-7, 8; 6.5-2

Welds
Weld transformer 4.2-1-8
Alternators 4.2-4
DC generators 4.2-4, 5
Multiple output 4.2-7
Selection 4.2-7, 8
Welding arc 1, 3-2, 3
Welding cable 4.1-2, 3-3, 38
Welding concrete reinforcing bars 13.1-1-5
Welding containers, precautions when 15.1-3
Welding costs 12.1-10
Welding circuit, basic 1.3-1
Welding currents 1.3-4
Welding transformers 1.3-4, 4-3
for submerged arc 14.2, 3-4

Weld metal, stainless chemical requirement 7.2-1
Weld quality 2.1-6, 6.4-2
Welded design
general considerations 2.1-1
factors that affect 2.1-2, 6
design approach 2.1-6, 20
for strength and rigidity 2.1-7
for strength, rigidity and appearance 2.1-7
for strength and appearance 2.1-7
for strength and aesthetic appearance 2.1-7
evolution of a design 2.1-29-31

Yield strength 1.2-1, 2; 3.1-4

SAE Alloy Steel Compositions SAE 1404G

Cr Mn Si Ni P S B C
18.7 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3
18.2 1.25 0.3 18.1 0.05 0.03 18.7 1.25 0.3