CONTENTS

Preface, xvii

PART I POLYMER STRUCTURE AND PROPERTIES

1. Basic principles, 3
 1.1 Introduction and historical development, 3
 1.2 Definitions, 6
 1.3 Polymerization processes, 10
 1.4 Step-reaction polymerization, 12
 1.5 Chain-reaction polymerization, 13
 1.6 Step-reaction addition and chain-reaction condensation, 15
 1.7 Nomenclature, 16
 1.7.1 Vinyl polymers, 17
 1.7.2 Vinyl copolymers, 20
 1.7.3 Nonvinyl polymers, 21
 1.7.4 Nonvinyl copolymers, 24
 1.7.5 End groups, 24
 1.7.6 Abbreviations, 25
 1.8 Industrial polymers, 25
 1.8.1 Plastics, 25
 1.8.2 Fibers, 27
 1.8.3 Rubber (elastomers), 28
 1.8.4 Coatings and adhesives, 29
 1.9 Polymer recycling, 30
References, 31
Review exercises, 32
2. Molecular weight and polymer solutions, 35
 2.1 Number average and weight average molecular weight, 35
 2.2 Polymer solutions, 37
 2.3 Measurement of number average molecular weight, 42
 2.3.1 End-group analysis, 42
 2.3.2 Membrane osmometry, 43
 2.3.3 Cryoscopy and ebulliometry, 46
 2.3.4 Vapor pressure osmometry, 46
 2.3.5 Mass spectrometry, 46
 2.3.6 Refractive index measurements, 48
 2.4 Measurement of weight average molecular weight, 48
 2.4.1 Light scattering, 48
 2.4.2 Uacentrifugation, 50
 2.5 Viscometry, 50
 2.6 Molecular weight distribution, 53
 2.6.1 Gel permeation chromatography (GPC), 53
 2.6.2 Fractional solution, 57
 2.6.3 Fractional precipitation, 58
 2.6.4 Thin-layer chromatography (TLC), 58

References, 58
Review exercises, 59

3. Chemical structure and polymer morphology, 61
 3.1 Introduction, 61
 3.2 Molecular weight and intermolecular forces, 62
 3.3 The amorphous state—rheology, 63
 3.4 Glass transition temperature, 70
 3.5 Stereochemistry, 74
 3.6 Crystallinity, 79
 3.7 Liquid crystallinity, 83
 3.8 Chemical crosslinking, 85
 3.9 Physical crosslinking, 86
 3.10 Polymer blends, 87

References, 91
Review exercises, 93
4. Chemical structure and polymer properties, 96

4.1 Introduction, 96
4.2 Fabrication methods, 96
4.3 Mechanical properties, 100
4.4 Thermal stability, 106
4.5 Flammability and flame resistance, 110
4.6 Chemical resistance, 112
4.7 Degradability, 114
4.8 Electrical conductivity, 117
4.9 Nonlinear optical properties, 120
4.10 Additives, 121
References, 124
Review exercises, 127

5. Evaluation, characterization, and analysis of polymers, 129

5.1 Introduction, 129
5.2 Chemical methods of analysis, 130
5.3 Spectroscopic methods of analysis, 130
 5.3.1 Infrared, 131
 5.3.2 Raman, 133
 5.3.3 Nuclear magnetic resonance, 134
 5.3.4 Electron spin resonance, 138
 5.3.5 Ultraviolet (UV)–visible, 139
 5.3.6 Fluorescence, 139
5.4 X-ray, electron, and neutron scattering, 140
5.5 Characterization and analysis of polymer surfaces, 141
 5.5.1 Scanning electron microscopy (SEM), 143
 5.5.2 Attenuated total reflectance spectroscopy (ATR), 143
 5.5.3 Photoacoustic spectroscopy (PAS), 144
 5.5.4 Electron spectroscopy for chemical analysis (or applications) (ESCA) and Auger electron spectroscopy (AES), 145
 5.5.5 Secondary-ion mass spectrometry (SIMS) and ion-scattering spectroscopy (ISS), 147
 5.5.6 Atomic force microscopy (AFM), 148
5.6 Thermal analysis, 149
 5.6.1 Differential scanning calorimetry (DSC) and differential thermal analysis (DTA), 149
5.6.2 Thermomechanical analysis (TMA), 152
5.6.3 Thermogravimetric analysis (TGA), 152
5.6.4 Pyrolysis-gas chromatography (PGC), 153
5.6.5 Flammability testing, 154
5.7 Measurement of mechanical properties, 156
5.8 Evaluation of chemical resistance, 159
5.9 Evaluation of electrical properties, 159
References, 160
Review exercises, 163

PART II VINYL POLYMERS

6. Free radical polymerization, 167
 6.1 Introduction, 167
 6.2 Free radical initiators, 169
 6.2.1 Peroxides and hydroperoxides, 169
 6.2.2 Azo compounds, 171
 6.2.3 Redox initiators, 171
 6.2.4 Photoinitiators, 172
 6.2.5 Thermal polymerization, 172
 6.2.6 Electrochemical polymerization, 173
 6.3 Techniques of free radical polymerization, 173
 6.3.1 Bulk, 174
 6.3.2 Suspension, 174
 6.3.3 Solution, 174
 6.3.4 Emulsion, 175
 6.4 Kinetics and mechanism of polymerization, 176
 6.5 Stereochemistry of polymerization, 186
 6.6 Polymerization of dienes, 188
 6.6.1 Isolated dienes, 188
 6.6.2 Conjugated dienes, 189
 6.7 Monomer reactivity, 191
 6.8 Copolymerization, 194
 References, 201
 Review exercises, 202
7. Ionic polymerization, 205
 7.1 Introduction, 205
 7.2 Cationic polymerization, 205
 7.2.1 Cationic initiators, 205
 7.2.2 Mechanism, kinetics, and reactivity in cationic polymerization, 207
 7.2.3 Stereochemistry of cationic polymerization, 213
 7.2.4 Cationic copolymerization, 215
 7.2.5 Isomerization in cationic polymerization, 217
 7.3 Anionic polymerization, 217
 7.3.1 Anionic initiators, 217
 7.3.2 Mechanism, kinetics, and reactivity in anionic polymerization, 219
 7.3.3 Stereochemistry of anionic polymerization, 223
 7.3.4 Anionic copolymerization, 225
 7.4 Group transfer polymerization, 227
References, 230
Review exercises, 231

8. Vinyl polymerization with complex coordination catalysts, 234
 8.1 Introduction, 234
 8.2 Heterogeneous Ziegler–Natta polymerization, 236
 8.2.1 Heterogeneous catalysts, 236
 8.2.2 Mechanism and reactivity in heterogeneous polymerization, 238
 8.2.3 Stereochemistry of heterogeneous polymerization, 242
 8.2.4 Polymerization of dienes, 243
 8.3 Homogeneous Ziegler–Natta polymerization, 245
 8.3.1 Metallocene catalysts, 245
 8.3.2 Mechanism and reactivity with metallocene catalysts, 246
 8.3.3 Stereochemistry of metallocene-catalyzed polymerization, 248
 8.4 Ziegler–Natta copolymerization, 249
 8.5 Supported metal oxide catalysts, 251
 8.6 Alfin catalysts, 252
 8.7 Metathesis polymerization, 252
8.7.1 Ring-opening metathesis polymerization, 253
8.7.2 Acyclic diene metathesis polymerization, 255

References, 255
Review exercises, 257

9. Reactions of vinyl polymers, 259
9.1 Introduction, 259
9.2 Functional group reactions, 260
 9.2.1 Introduction of new functional groups, 260
 9.2.2 Conversion of functional groups, 261
9.3 Ring-forming reactions, 263
9.4 Crosslinking, 265
 9.4.1 Vulcanization, 265
 9.4.2 Radiation crosslinking, 267
 9.4.3 Photochemical crosslinking, 267
 9.4.4 Crosslinking through labile functional groups, 271
 9.4.5 Ionic crosslinking, 272
9.5 Block and graft copolymer formation, 272
 9.5.1 Block copolymers, 272
 9.5.2 Graft copolymers, 273
9.6 Polymer degradation, 276
 9.6.1 Chemical degradation, 276
 9.6.2 Thermal degradation, 277
 9.6.3 Degradation by radiation, 278

References, 279
Review exercises, 281

PART III NONVINYL POLYMERS

10. Step-reaction and ring-opening polymerization, 285
10.1 Introduction, 285
10.2 Step-reaction polymerization—kinetics, 285
10.3 Stoichiometric imbalance, 290
10.4 Molecular weight distribution, 292
10.5 Network step polymerization, 295
10.6 Step-reaction copolymerization, 297
10.7 Step polymerization techniques, 298
10.8 Dendritic polymers, 301
10.9 Ring-opening polymerization, 304
References, 306
Review exercises, 307

11. Polyethers, polysulfides, and related polymers, 309
11.1 Introduction, 309
11.2 Preparation of polyethers by chain-reaction and ring-opening polymerization, 309
 11.2.1 Polymerization of carbonyl compounds, 309
 11.2.2 Stereochemistry of aldehyde polymerization, 313
 11.2.3 Polymerization of cyclic ethers, 314
 11.2.4 Stereochemistry of epoxide polymerization, 320
11.3 Preparation of polyethers by step-reaction polymerization, 321
 11.3.1 Synthesis of polyethers from glycols and bisphenols, 321
 11.3.2 Polyacetals and polyketals, 322
 11.3.3 Poly(phenylene oxide)s, 324
 11.3.4 Epoxy resins, 326
11.4 Polysulfides, poly(alkylene polysulfide)s, and polysulfones, 329
 11.4.1 Polysulfides, 329
 11.4.2 Poly(alkylene polysulfide)s, 331
 11.4.3 Polysulfones, 332
References, 333
Review exercises, 334

12. Polyesters, 338
12.1 Introduction, 338
12.2 Linear polyesters, 341
 12.2.1 Preparation of polyesters by polycondensation reactions, 341
 12.2.2 Polycarbonates, 346
 12.2.3 Preparation of polyesters by ring-opening polymerization, 348
 12.2.4 Microbial polyesters, 352
12.3 Hyperbranched polyesters, 353
12.4 Crosslinked polyesters, 354
 12.4.1 Saturated polyester resins, 354
 12.4.2 Unsaturated polyesters, 356
References, 359
Review exercises, 360
13. Polyamides and related polymers, 364
 13.1 Introduction, 364
 13.2 Polyamides, 366
 13.2.1 Preparation of polyamides by polycondensation reactions, 366
 13.2.2 Polymerization of lactams, 369
 13.2.3 Miscellaneous methods of preparing polyamides, 372
 13.3 Properties of polyamides, 374
 13.4 Polyureas, 377
 13.5 Polyurethanes, 378
 13.6 Polyhydrazides, 382
 13.7 Polyimides, 382
References, 388
Review exercises, 390

14. Phenol–, urea–, and melamine–formaldehyde polymers, 395
 14.1 Introduction, 395
 14.2 Phenol–formaldehyde polymers: resoles, 396
 14.3 Phenol–formaldehyde polymers: novolacs, 399
 14.4 Chemical modifications of phenolic resins, 402
 14.5 Urea–formaldehyde polymers, 404
 14.6 Melamine–formaldehyde polymers, 406
References, 407
Review exercises, 408

15. Heterocyclic polymers, 409
 15.1 Introduction, 409
 15.2 Polypyrrole, polyfuran, and polythiophene, 412
 15.3 Polycyanurate and polyphthalocyanine resins, 413
 15.4 Heterocyclic polymers formed from precursor polymers, 414
 15.5 Heterocyclic polymers formed from polyfunctional monomers, 415
 15.5.1 Polybenzimidazoles, 415
 15.5.2 Polybenzoxazoles and polybenzothiazoles, 417
 15.5.3 Polyhydantoins, 418
 15.5.4 Poly(parabanic acid)s, 418
 15.5.5 Polyquinoxalines and polypyrazines, 419
 15.5.6 Polypyrazoles and polyimidazoles, 419
 15.5.7 Poly(as-triazine)s and polytriazolines, 420
Contents

15.5.8 Polyquinolines and polyanthrazolines, 421
References, 421
Review exercises, 422

16. Inorganic and partially inorganic polymers, 425
16.1 Introduction, 425
16.2 Poly(sulfur nitride), 426
16.3 Polysiloxanes, 427
16.4 Polysilanes, 430
16.5 Polyphosphazenes, 431
16.6 Carborane polymers, 434
16.7 Organometallic polymers, 436
16.8 Coordination polymers, 438
References, 442
Review exercises, 444

17. Miscellaneous organic polymers, 447
17.1 Introduction, 447
17.2 Miscellaneous unsaturated polymers, 447
 17.2.1 Polycarbodiimides, 447
 17.2.2 Polyimines, 449
 17.2.3 Polymers containing carbon–carbon double bonds, 450
 17.2.4 Azo polymers, 450
 17.2.5 Polymers containing carbon–carbon triple bonds, 451
17.3 Poly(p-phenylene) and poly(p-xylylene), 452
 17.3.1 Poly(p-phenylene), 452
 17.3.2 Poly(p-xylylene), 454
17.4 Friedel–Crafts polymers, 455
17.5 Cycloaddition polymerization, 456
 17.5.1 Diels–Alder polymerization, 456
 17.5.2 2 + 2 Cycloaddition polymerization, 459
17.6 Polyanhydrides, 460
17.7 Polyamines, 461
17.8 Charge-transfer polymers, 464
17.9 Ionic polymers, 467
References, 469
Review exercises, 471
18. Natural polymers, 476
18.1 Introduction, 476
18.2 Miscellaneous natural polymers, 476
 18.2.1 Rubber, 476
 18.2.2 Lignin, humus, coal, and kerogen, 479
 18.2.3 Asphaltenes, 481
 18.2.4 Shellac, 481
 18.2.5 Amber, 482
 18.2.6 Tall oil-derived polymers, 482
18.3 Polysaccharides, 484
 18.3.1 Cellulose, 484
 18.3.2 Regenerated cellulose, 485
 18.3.3 Derivatives of cellulose, 486
 18.3.4 Starch, 489
 18.3.5 Derivatives of starch, 490
 18.3.6 Other polysaccharides, 491
18.4 Proteins, 492
 18.4.1 Amino acids, polypeptides, and proteins, 492
 18.4.2 Protein structure, 495
 18.4.3 Synthesis of polypeptides and proteins, 498
 18.4.4 Wool, silk, collagen, and regenerated protein, 500
18.5 Nucleic acids, 502
 18.5.1 Nucleic acid structure, 502
 18.5.2 Nucleic acid synthesis, 507
18.6 Conclusion, 510
References, 510
Review exercises, 513

Appendix A Commonly used polymer abbreviations, 515
Appendix B Polymer literature, 517
Appendix C Sources of laboratory experiments in polymer chemistry, 526
Index, 535
INDEX

A-stage, definition of, 327
ABA block copolymers, 206
Abbreviations, 25
Abrasion resistance, 101, 159
ABS. See Acrylonitrile-butadiene-styrene copolymer
Acetal polymer. See Polyoxymethylene
Acetate rayon, 487
Acid number, 43
Acrylonitrile-butadiene copolymer, 168
Acrylonitrile-butadiene-styrene copolymer, 168
Acrylonitrile-vinyl chloride copolymer, 168
Acyclic diene metathesis polymerization, 255
Addition polymerization, definition of, 10
Addition polymers, definition of, 10
Additives, 121–24
Adenine, 504
Adenosine, 504
Adenosine diphosphate, 504–5
Adenosine monophosphate, 504–5
Adenosine triphosphate, 504–5
Adhesives, 29–30
ADMET. See Acyclic diene metathesis polymerization
ADP. See Adenosine diphosphate
AES. See Auger electron spectroscopy
Aesthetic property modifiers. See Additives
AFM. See Atomic force microscopy
Agar, 491–92
Alfin catalysts, 252
Alginic acid, 491
Alkali cellulose, 485
Alkyds. See Crosslinked polyesters
Alkyleneimines, polymerization of, 463–64
Allyl resins, 168, 189
2-Allylphenol, 403
Alpha helix, 496–97
Alpha olefins, 234
Alternating copolymer, definition of, 7
Alternating copolymerization, mechanism of, 199–201
Amber, 482
Amino acids, 492–95
C-terminal, 493
N-terminal, 493
Amorphous state, 63–70
AMP. See Adenosine 5'-monophosphate
Amylopectin, 489–90
Amylose, 489
Anionic polymerization, 217–27
chain transfer in, 220–21
copolymerization, 225–27
epoxides, 317–18
initiators, 217–19
kinetics and mechanism of, 219–23
of lactams, 370
rate constants for, 222
stereochemistry of, 223–25
Annealing, 79
Antiblocking agents. See Additives
Antifogging agents. See Additives
Antioxidants. See Additives
Antistatic agents. See Additives
Araban, 492
Arachin, 502
Aramids, 368
properties of, 106
Arc resistance, 160
Aromatic polyamides. See Aramids
Asphaltenes, 481
Atactic, definition of, 74
Atom transfer radical polymerization, 184
Atomic force microscopy, 148-49
ATP. See Adenosine triphosphate
ATR. See Attenuated total reflectance spectroscopy
Attenuated total reflectance spectroscopy, 143-44
Auger electron spectroscopy, 145-47
Autoacceleration, 174
Autoionization, 207
Average functionality, 295-96
Azeotropic polymerization, 197
Aziridines. See Alkyleneimines
Azo compounds, 171
Azo polymers, 450-51
Azomethine polymers. See Polyimines
Backbiting, 181
Baekeland, Leo, 5
Bagasse, 479
Bakelite. See Phenol-formaldehyde polymers
Balata, 478-79
Barcol test. See Hardness
Base unit, definition of, 7
Benzophenone-3,3',4,4'-tetracarboxylic dianhydride, polyimide from, 385
Benzoyl peroxide, 169-70
Berzelius, 5
Beta arrangement. See Pleated sheet
Bimetallic mechanism, 238-40
Bingham Newtonian fluid, 65-66
Bis(hydroxyethyl) terephthalate, 341
Bismaleimides, polyimides from, 385-86
Bisimidazoles, polyimides from, 386-87
Bisphenol A, 72
in epoxy resins, 326
Bisphenol A-furfural resins, 403
Bisphenol A-propylene oxide derivative, 112-13
Bitumens. See Asphaltenes
Block copolymers, 272-73
definition of, 7
Blowing agent, 99. See also Additives
Bodying. See Oil-modified alkyds
Boron nitride, 425-26
Branch polymer, definition of, 8
Bridged ferrocenes, thermal polymerization of, 437
B-stage, 97-98, 327, 358
Bulk polymerization, 174, 299
1,3-Butadiene, 18
Butyl rubber, 206, 216
Butyrolactam, polymerization of, 371
Cage effect, 169
Calendering, 99
Caoutchouc. See Natural rubber
Caprolactam, polymerization of, 369
Capryllactam, polymerization of, 371
Carbon fiber, 263-64
Carbon nanotubes, 263
Carborane polymers, 434-36
Carborane-siloxane polymers, 435
Carboxymethyl cellulose, 488
Cardanol. See Cashew nut shell liquid
Cardo polymers, 108
Carothers equation, 13, 286, 289-92
Carothers, Wallace Hume, 5, 460
Carrageenin, 491-92
Casein, 502
Cashew nut shell liquid, 403
Casting, 98
Cationic polymerization, 205-17
aldehydes, 312
chain transfer in, 208-12
copolymerization, 215-17
cyclic ethers, 315-17
initiators, 205-7
isomerism in, 217
kinetics and mechanism of, 207-15
lactams, 369-70
rate constants for, 212
stereochemistry of, 213-15
Ceiling temperature, 193-94
of aliphatic polysulfones, 332
Cellophane, 486
Celluloid. See Cellulose nitrate
Cellulose, 484-89
crosslinked, 488-89
derivatives of, 486-89
fibers, 485
graft copolymers of, 488
native, 484
regenerated, 485-86
solvents for, 485
Cellulose acetate, 487
Cellulose butyrate, 487
Cellulose esters, 486–87
Cellulose ethers, 487–88
Cellulose nitrate, 486–87
Cellulose propionate, 487
Celluloses, 430
Chain transfer, 180–83, 208–12
Chain transfer agents, 175
Chain transfer constants, 183
Chain transfer grafting, 273–74
Chain-growth polymerization. See Chain-reaction polymerization
Chain-reaction polymerization, 13–15
definition of, 11
Charge transfer complexes, 200–1
Charge-transfer polymers, 464–67
Chemical analysis, 130
Chemical blends, 88
Chemical degradation, 276–77
Chemical property modifiers. See Additives
Chemical resistance, 112–14
evaluation of, 159
Chicle, 478–79
Chitin, 491
Chitosan, 491
Chlorendic anhydride, 328
Chloroprene, 190
CNSL. See Cashew nut shell liquid
Coal, 479–80
Coatings, 29–30
COC. See Cycloolefin copolymers
Cohesive energy density, 38
Cold flow. See Creep
Collagen, 495, 502
Comb polymers, definition of, 8–9
Commodity plastics, definition of, 26
Compatibilizers, 91
Complex coordination polymerization, 234–55
catalysts for, 236–38, 245–46
chain transfer in, 240–41
copolymerization, 249–51
dienes, 243–45
epoxides, 318–20
mechanism and reactivity in, 238–42, 246–48
stereochemistry of, 242–43, 248–49
Compression molding, 97–98
Compressive strength, 101–5
Compton scattering. See X-ray scattering
Condensation polymerization, definition of, 10
Condensation polymers, definition of, 10
Conductivity. See Electrical conductivity
Cone-plate rotational viscometer, 69–70
Conjugated dienes, polymerization of, 189–91
Conjugated proteins, 495
Controlled release, 115–17
Convergent synthesis. See Dendrimers
Coordination polymers, 438–42
Copolymer, definition of, 7
Copolymer composition equation. See Copolymer equation
Copolymer equation, 195
Copolymerization
anionic, 225–27
cationic, 215–17
free radical, 194–201
step-reaction, 297–98
Ziegler–Natta, 249–51
Copper, conductivity of, 119
Cotton, properties of, 106
Coumarone-indene resins, 206
Counterions. See Ionic polymerization
Coupling agents. See Additives
Crazing, 159
Crease-resistance. See Cellulose, crosslinked
Creep, 104
Crepe, 479
Crick, Francis, 505
Critical reaction conversion, 296
Cross-polarization. See Nuclear magnetic resonance spectroscopy
Crosslink density, 86
Crosslinked polyesters, 354–56
Crosslinking, 85–87, 268–72
definition of, 10
ionic, 272
photochemical, 267–70
through labile functional groups, 271
vinyl polymers, 265–72
with radiation, 267
Crosslinking agents. See Additives
Cryoscopy, 46
Crystalline melting point, 81–83
Crystallinity, 79–83
Crystallites, 79–80
C-stage, definition of, 327
Cumyl hydroperoxide, 170
Cuprammonium process, 486
Curing. See Crosslinking
Cyclic ethers, polymerization of, 314–20
Cyclic oligomers, 351–52
Cycloaddition polymerization, 456–60
Cycloolefin copolymers, 251
Cyclopolymerization, 188–89
Cytidine, 504
Cytosine, 504
Defoaming agents. See Additives
Degradability, 114–17
Degradation of polymers, 276–79
Degree of polymerization, definition of, 7
Dendrimers, 301–3
definition of, 9
Dendritic polymers. See Dendrimers
Deodorants. See Additives
Deoxyadenosine, 504
Deoxycytidine, 504
Deoxyguanosine, 504
Deoxyribonucleic acids. See Nucleic acids
Deoxythymidine, 504
Depolymerization by ADMET, 255
Depropagation. See Thermal degradation
3,3-Di(chloromethyl)oxacyclobutane, polymerization of, 315
Di-2-ethylhexyl adipate, 121, 123
di-2-ethylhexyl phthalate, 123
Di-2-ethylhexyl sebacate, 123
di-2-decylhexyl phthalate, 123
di-n-octyl phthalate, 123
di-n-tridecyl phthalate, 123
di-n-undecyl phthalate, 123
di-t-butyl peroxide, 170
Diacetyl peroxide, 170
Diallyl phthalate, 189
Diblock copolymer, definition of, 7
Dicyclopentadiene dioxide, in epoxy resins, 327
die swell, 64, 67
dielectric constant, 160
dielectric strength, 160
diels–Alder polymerization, 456–59
diene polymerization, 188–91, 243–45
Diethylene glycol bis(allyl carbonate), 189
differential scanning calorimetry, 149–52
differential thermal analysis, 149–52
dimer acids, 483
divergent synthesis. See Dendrimers
DNA. See Nucleic acids
dodecenylysuccinic anhydride, 328
dopants, 117–18
dragline silk, 500
drawing, 79, 102
drawn fibrillar morphology, 81
dry spinning, 99
drying. See Oil-modified alkyls
drying oils. See Oil-modified alkyls
dsc. See Differential scanning calorimetry
dta. See Differential thermal analysis
durable press. See Cellulose, crosslinked
durham route, 278–79
dyes. See Additives
dynamic equilibrium method. See Membrane osmometry
ebulliometry, 46
elastomers, 28–29
electrical conductivity, 117–20
electrical properties, evaluation of, 159–60
electrochemical polymerization, 173
electron paramagnetic resonance. See Electron spin resonance spectroscopy
electron scattering, 140–41
electron spectroscopy for chemical analysis, 145–47
electron spin resonance spectroscopy, 138–39
electrospray ionization mass spectrometry, 47
eLLag acid, 403–4
elongation. See Tensile strength
emeraldine salt. See Polyaniline
emulsifiers. See Additives
emulsion polymerization, 175–76
kinetics of, 185–86
end group analysis, 42–43
end group modification, 113
end groups
definition of, 7
nomenclature of, 24
engineering plastics, definition of, 26
epdm. See Ethylene-propylene-diene copolymer
epichlorohydrin, 326
episulfides, polymerization of, 330
epitaxial morphology, 81
epm. See Ethylene-propylene copolymer
Epoxidized linseed oil, 123
Epoxidized oils, 327
Epoxidized soya oil, 123
Epoxy resins, 326-29
\hspace{1em} B-stage, 327
curing of, 327-28
grafting of, 329
EPR. See Electron paramagnetic resonance.
\hspace{1em} See also Ethylene-propylene rubber
Erythro structures, 76-78
ESCA. See Electron spectroscopy for chemical analysis
ESI-MS. See Electrospray ionization mass spectrometry
ESR. See Electron spin resonance spectroscopy
Ester gums, 483
Ethylcellulose, 487
Ethylene-1-alkene copolymer. See Linear low-density polyethylene
Ethylene oxide, polymerization of, 14, 315
Ethylene, polymerization of, 13-14
Ethylene-propylene block copolymers, 236, 251
Ethylene-propylene copolymers, 236, 249
Ethylene-propylene-diene copolymer, 236, 249-50
Ethylene-propylene rubber, 249
Ethylene-vinyl acetate copolymer, 168
EVA. See Ethylene-vinyl acetate copolymer
Exiplexes. See Fluorescence spectroscopy
Expansion factor, 40-41
Extended-chain crystals, 80
Extrusion, 98

Fabrication of polymers, 96-100
Fatigue, 101, 157
FD-MS. See Field desorption mass spectrometry
Ferrocenylmethyl acrylate, 436
Fiber-reinforced plastic, 5, 98
Fibers, 27-28
Fibroin, 495
Field desorption mass spectrometry, 47
Filament winding, 99
First-order transition temperature. See
\hspace{1em} Crystalline melting point
Flame resistance, 110-12
Flame retardants. See Additives

Flammability. See Flame resistance
Flammability testing, 154-56
Flash pyrolysis. See Pyrolysis gas chromatography
Flexible spacers, 85
Flexural strength, 101-5
Flory, Paul, 6
Flory-Fox equation, 41
Flory temperature. See Theta temperature
Fluorescence spectroscopy, 139-40
Foams, 99
Folded-chain lamella model, 80
Fractional precipitation, 58
Fractional solution, 57-58
Franklin, Rosalind, 505
Free radical initiators, 169-73
\hspace{1em} azo compounds, 173
electrochemical polymerization, 173
peroxides and hydroperoxides, 169-71
photoinitiators, 172
redox, 171
thermal polymerization, 172
Free radical polymerization, 167-201
\hspace{1em} chain transfer, 180-83
\hspace{1em} constants for propagation and termination, 180
copolymerization, 194-201
dienes, 188-91
ketene acetals, 351
kinetic chain length, 179-80
kinetics and mechanism of, 176-86
living, 184-85
monomer reactivity, 191-94
primary radical termination, 177
stereochemistry of, 186-88
techniques of, 173-76
Friedel-Crafts polymers, 455-56
Fringed micelle model, 79-80
FTIR. See Infrared spectroscopy
Fulvic acid. See Humus
Furan resins, 402
Furfural, 402
Furfuryl alcohol, 402-3
Furnace chamber pyrolysis. See Pyrolysis gas chromatography

Galactans, 492
Gallic acid, 403-4
Gas-phase polymerization, 173
Gegenions. See Ionic polymerization
Gel effect. See Trommsdorff effect
Gel filtration chromatography, 54
Gel permeation chromatography, 53–57
Gel point, 295
Gel-spinning, 105
Gelatin, 502
GPC. See Gel filtration chromatography
Glass, properties of, 106
Glass transition temperature, 70–74
Glycidyl ether, definition of, 326
Glycinin, 502
Glycogen, 492
Glycolide, polyester from, 350
Glyptal, 354–55
Gold, conductivity of, 119
Goodyear, Charles, 266
GPP. See Gel permeation chromatography
Graft copolymer, definition of, 7
Graft copolymers, 273–76
of cellulose, 488
of epoxy resins, 329
Graphite fiber. See Carbon fiber
Group molar attraction constants, 38–39
Group transfer polymerization, 227–30
GTP. See Group transfer polymerization
Guanine, 504
Guanosine, 504
Guayule, 478
Gum arabic, 492
Gum tragacanth, 492
Guncotton. See Cellulose nitrate
Gutta percha, 478–79
Halatopolymers, 468
Hardness, 101, 158
HDPE. See Polyethylene, high-density
Head-to-tail polymerization, 74, 176
Heat stabilizers. See Additives
Hemicelluloses, 492
Hemitactic, definition of, 78
Heterochain polymer, definition of, 7
Heterocyclic polymers, 409–21
from precursor polymers, 414–15
from polyfunctional monomers, 405–21
Heterogeneous catalysts, 236–388
Heterotactic. See Atactic
Hevea. See Natural rubber
Hexachlorocyclotriphosphazene, 431
Hexafluoropropylene oxide, polymerization of, 315
Hexamethylenetetramine, 401–2
High-mileage catalysts, 238
Homochain polymer, definition of, 7
Homopolymer, definition of, 7
Humic acid. See Humus
Humin. See Humus
Humus, 479–80
Hydrocarbon resins, 206
Hydrolytic polymerization, 371
Hydroperoxides, 169–71
Hydroxyethyl cellulose, 488
Hydroxymethylfurfural, 402–3
Hydroxypropyl cellulose, 488
Hyperbranched polyesters, 353–54
Hyperbranched polymers, 303, 353–54
definition of, 9
Hyperfine splitting. See Electron spin resonance spectroscopy

IEN. See Interpenetrating elastomeric networks
Immortal polymers, 320
Impact modifiers. See Additives
Impact strength, 101, 105
Industrial polymers, 25–30
Infrared spectroscopy, 131–33
Inherent viscosity, 51
Inifer, 210
Initiating system, 207
Initiator efficiency, 178
Injection molding, 97–98
Inorganic polymers, 425–27
Inorganic-organic polymers, 427–42
Insulation resistance, 160
Interaction spectrum. See Infrared spectroscopy
Interfacial polymerization, 299–300
Intermolecular forces, 62
Internal reflection spectroscopy. See
Attenuated total reflectance spectroscopy
Interpenetrating elastomeric networks, 88
Interpenetrating polymer networks, 88
Intrinsic viscosity, 51–52
Intumescent flame retardants, 112
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse emulsion. See Emulsion polymerization</td>
<td>468</td>
</tr>
<tr>
<td>Ion-exchange resins</td>
<td>467-68</td>
</tr>
<tr>
<td>Ion-scattering spectroscopy</td>
<td>147-48</td>
</tr>
<tr>
<td>I onenes</td>
<td>467</td>
</tr>
<tr>
<td>Ionic crosslinking</td>
<td>272</td>
</tr>
<tr>
<td>Ionic polymerization</td>
<td>205-30</td>
</tr>
<tr>
<td>anionic</td>
<td>217-27</td>
</tr>
<tr>
<td>cationic</td>
<td>205-17</td>
</tr>
<tr>
<td>Ionic polymers</td>
<td>467-69</td>
</tr>
<tr>
<td>Ionomers</td>
<td>272</td>
</tr>
<tr>
<td>IPN. See Interpenetrating polymer networks</td>
<td></td>
</tr>
<tr>
<td>Isobutylene-cyclopentadiene copolymer</td>
<td>206</td>
</tr>
<tr>
<td>Isobutylene-isoprene copolymer</td>
<td>206</td>
</tr>
<tr>
<td>Isolated dienes, polymerization of</td>
<td>188-89</td>
</tr>
<tr>
<td>Isomerization polymerization</td>
<td>217</td>
</tr>
<tr>
<td>Isotactic, definition of</td>
<td>74</td>
</tr>
<tr>
<td>Isothermal TGS. See Thermogravimetric analysis</td>
<td></td>
</tr>
<tr>
<td>ISS. See Ion-scattering spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Izod impact test</td>
<td>157</td>
</tr>
<tr>
<td>Kendrew, John</td>
<td>498</td>
</tr>
<tr>
<td>Keratin</td>
<td>495, 501</td>
</tr>
<tr>
<td>Kerogen</td>
<td>481</td>
</tr>
<tr>
<td>Ketene aminal, polymerization of</td>
<td>373</td>
</tr>
<tr>
<td>Kevlar. See Poly(p-phenylene terephthal-</td>
<td>84</td>
</tr>
<tr>
<td>amide),</td>
<td></td>
</tr>
<tr>
<td>Kinetic chain length</td>
<td>179-80</td>
</tr>
<tr>
<td>Lactams, polymerization of</td>
<td>369-72</td>
</tr>
<tr>
<td>Ladder polymers</td>
<td>417</td>
</tr>
<tr>
<td>definition of</td>
<td>9</td>
</tr>
<tr>
<td>Ladder pyrrones. See Polymidazopyrrolones</td>
<td></td>
</tr>
<tr>
<td>Laser desorption mass spectrometry</td>
<td>47</td>
</tr>
<tr>
<td>Laser pyrolysis. See Pyrolysis gas chro-</td>
<td></td>
</tr>
<tr>
<td>matography</td>
<td></td>
</tr>
<tr>
<td>Latex blends</td>
<td>88</td>
</tr>
<tr>
<td>Lauryllactam, polymerization of</td>
<td>371</td>
</tr>
<tr>
<td>LD-MS. See Laser desorption mass spec-</td>
<td></td>
</tr>
<tr>
<td>trometry</td>
<td></td>
</tr>
<tr>
<td>LDPE. See Polyethylene, low-density</td>
<td></td>
</tr>
<tr>
<td>Light scattering, determination of molec-</td>
<td></td>
</tr>
<tr>
<td>ular weight by</td>
<td>45-49</td>
</tr>
<tr>
<td>Light stability</td>
<td>114</td>
</tr>
<tr>
<td>Lignin</td>
<td>403-4, 479-80</td>
</tr>
<tr>
<td>Limiting oxygen index</td>
<td>155-56</td>
</tr>
<tr>
<td>Limiting viscosity number. See Intrinsic viscosity</td>
<td></td>
</tr>
<tr>
<td>Linear low-density polyethylene</td>
<td>234</td>
</tr>
<tr>
<td>commercial uses for</td>
<td></td>
</tr>
<tr>
<td>Linear polymer, definition of</td>
<td>8</td>
</tr>
<tr>
<td>Liquid crystallinity</td>
<td>83-85</td>
</tr>
<tr>
<td>Living polymers</td>
<td></td>
</tr>
<tr>
<td>anionic</td>
<td>221-22</td>
</tr>
<tr>
<td>cationic</td>
<td>211</td>
</tr>
<tr>
<td>free radical</td>
<td>184-85</td>
</tr>
<tr>
<td>polyether</td>
<td>312, 317, 320</td>
</tr>
<tr>
<td>LLDPE. See Linear low-density polyethy-</td>
<td></td>
</tr>
<tr>
<td>lene</td>
<td></td>
</tr>
<tr>
<td>Logarithmic viscosity number. See Inher-</td>
<td></td>
</tr>
<tr>
<td>ent viscosity</td>
<td></td>
</tr>
<tr>
<td>LOI. See Limiting oxygen index</td>
<td></td>
</tr>
<tr>
<td>Low-profile additives. See Additives</td>
<td></td>
</tr>
<tr>
<td>Lubricants. See Additives</td>
<td></td>
</tr>
<tr>
<td>Macromers. See Macromonomers</td>
<td></td>
</tr>
<tr>
<td>Macromolecule, definition of</td>
<td>3</td>
</tr>
<tr>
<td>Macromonomers, definition of</td>
<td>9</td>
</tr>
<tr>
<td>Magic angle spinning. See Nuclear magne-</td>
<td></td>
</tr>
<tr>
<td>tic resonance spectroscopy</td>
<td></td>
</tr>
<tr>
<td>MALDI-MS. See Matrix-assisted laser de-</td>
<td></td>
</tr>
<tr>
<td>sorption ionization mass spectrometry</td>
<td></td>
</tr>
<tr>
<td>MALDI-TOF. See Matrix-assisted laser de-</td>
<td></td>
</tr>
<tr>
<td>sorption ionization mass spectrometry</td>
<td></td>
</tr>
<tr>
<td>MAO. See Methylalumoxanes</td>
<td></td>
</tr>
<tr>
<td>Mark-Houwink-Sakurada equation</td>
<td>41-42,</td>
</tr>
<tr>
<td></td>
<td>52-53, 55, 68</td>
</tr>
<tr>
<td>Marvel, Carl</td>
<td>5, 108, 415</td>
</tr>
<tr>
<td>Mass spectrometry, molecular weight deter-</td>
<td></td>
</tr>
<tr>
<td>mination by</td>
<td>46</td>
</tr>
<tr>
<td>Matrix-assisted laser desorption ioniza-</td>
<td></td>
</tr>
<tr>
<td>tion mass spectrometry</td>
<td>47</td>
</tr>
<tr>
<td>MDPE. See Polyethylene, medium-density</td>
<td></td>
</tr>
<tr>
<td>Mechanical blends</td>
<td>88</td>
</tr>
<tr>
<td>Mechanical properties, 100-106</td>
<td></td>
</tr>
<tr>
<td>measurement of</td>
<td>156-59</td>
</tr>
<tr>
<td>Mechanical property modifiers. See Addi-</td>
<td></td>
</tr>
<tr>
<td>tives</td>
<td></td>
</tr>
<tr>
<td>Mechanochemical blends</td>
<td>88</td>
</tr>
<tr>
<td>Melamine</td>
<td>395, 406</td>
</tr>
<tr>
<td>Melamine-formaldehyde polymers</td>
<td>406-7</td>
</tr>
<tr>
<td>Membrane osmometry</td>
<td>43-45</td>
</tr>
<tr>
<td>Membrane-controlled release devices</td>
<td>116-17</td>
</tr>
</tbody>
</table>
Mercaptoethylcellulose, 488
Mercerization, 485
Merrifield, Bruce, 6, 498
Merrifield solid-phase peptide synthesis, 498–500
Meso structures, 75
Mesogens, definition of, 85
Mesophase, definition of, 83
Messenger RNA. See Nucleic acids
Metaldehyde, 311
Metallocene catalysts, 245–46
Metathesis polymerization, 252–55
Methylalumoxanes, 245
Methylcellulose, 487–88
5'-Methylcytosine, 504
MF. See Melamine-formaldehyde polymers
Microbial polyesters, 352–53
Microgels, 86
MIR. See Multiple internal reflection
Model compounds. See Infrared spectroscopy
Modulus, 102–5
Molecular sieving. See Gel permeation chromatography
Molecular weight, determination of, 42–53
Molecular weight distribution, 53–58, 292–95
determination of, 53–58
in step-reaction polymerization, 292–95
Molecular wires, 120
Molecule-induced homolysis. See Thermal polymerization
Monomer, definition of, 3
Monomer reactivity, 191–94
Monomeric unit, definition of, 7
Monometallic mechanism, 238–39
Multiblock copolymer, definition of, 7
Multiple internal reflection, 143
Myosin, 495

Nadic methyl anhydride, 328
Native cellulose, 484
Natta, Giulio, 6, 74, 234
Natural polymers, 476–510
commercial uses for, 477
Natural rubber, 476–79
from guayule, 478
Naval stores, 482
N-Carboxy-α-amino acid anhydrides, polymerization of, 371–72

Neighboring group effect, 259–60
Neoprene rubber. See Polychloroprene
Network polymer, definition of, 8
Network step polymerization, 295–97
Neutron scattering, 141
Newtonian fluid, 65–66
Nitrile rubber. See Acrylonitrile-butadiene copolymer
Nitrocellulose. See Cellulose nitrate
NLO. See Nonlinear optical properties
NMR. See Nuclear Magnetic Resonance spectroscopy
Nomenclature, 16–24
determinants, 24
IUPAC, 18
nonvinyl copolymers, 24
nonvinyl polymers, 21–24
source-based, 16
vinyl copolymers, 20–21
vinyl polymers, 17–19
Nonchain scission. See Thermal degradation
Nonisothermal TGA. See Thermogravimetric analysis
Nonlinear optical properties, 120–21
Norbornene polymer. See Poly(1,3-cyclopentadienevinylene)
Norrish type II reactions, 115
Norris-Smith effect. See Trommsdorff effect
Noryl. See Poly(phenylene oxide)
Novolacs, 399–402
Nuclear magnetic resonance spectroscopy, 134–38
Nucleating agents. See Additives
Nucleation, 81
Nucleic acids, 502–10
determinants, 505–7
cyclic, 505, 507
primary structure, 507
replication of, 505–6
synthesis of, 507–10
Nucleoside, definition of, 503
Nucleotide, definition of, 503
Number average molecular weight, 35–37
Number average molecular weight, determinations, 42–48
cryoscopy and ebulliometry, 46
determinants, 42–43
mass spectrometry, 46–48
membrane osmometry, 43–45
re refractive index measurement, 48
vapor pressure osmometry, 46
Nylon 1, derivatives of, 373–74
Nylon 2, 371–72
Nylon 3, 373–74
Nylon 4, 371
Nylon 5, 371
Nylon 6, 365, 369
Nylon 7, 365, 367
Nylon 8, 365, 371
Nylon 9, 365, 367
Nylon 11, 365, 367
Nylon 12, 365, 371
Nylon 14, 365, 367
Nylon 66, 365, 367
Nylon 69, 365
Nylon 610, 365
Nylon 611, 365
Nylons, mechanical properties of, 105–6

Odorants. See Additives
Oil-in-water emulsion. See Emulsion polymerization
Oil length. See Oil-modified alkyds
Oil-modified alkyds, 355–56
Olefin metathesis, 252
Oligomer, definition of, 6
Optical rotatory dispersion, 139
ORD. See Optical rotatory dispersion
Ordered copolyamides, 375
Organometallic polymers, 436–38
2-Oxazolines, polymerization of, 464
Oxetane, 315
Oxirane, 315
Ozone, resistance, 114, 250
Ozonolysis of polyacetylene, 130
Ozonolysis of rubber, 130

PAI. See Polyamideimide
PAMAM. See Polyamidoamine
Paper chromatography, 58
Parafomaldehyde, 312
Paraldehyde, 311
PAS. See Photoacoustic spectroscopy
Pauling, Linus, 496
PBI. See Polybenzimidazole
PBO. See Polybenzoxazoles
PBT. See Poly(butylene terephthalate)
PC. See Polycarbonate
PEEK. See Polyetheretherketone
PEI. See Polyetherimide
PEK. See Polyetherketone
PEN. See Poly(ethylene naphthalene-2,6-dicarboxylate)
Permanence, 123
Peroxides, 169–71
Perutz, Max, 498
PET. See Poly(ethylene terephthalate)
PETE. See Poly(ethylene terephthalate)
PF. See Phenol-formaldehyde polymers
PGC. See Pyrolysis-gas chromatography
Phase-transfer catalysis, 300–301, 322
PHB. See Poly(3-hydroxybutyrate)
PHBV. See Poly(3-hydroxybutyrate-valerate)
Phenol, 395
Phenol-formaldehyde polymers, 396–404
chemical modifications of, 402–4
novolacs, 399–402
resoles, 396–99
Phenolic resins. See Phenol-formaldehyde polymers
Phillips catalyst, 251
Phosphonitrilic chloride trimer. See Hexachlorocyclotriphosphazene
Phosphonitrilic polymers. See Polyphosphazenes
Phosphorylation, 367
Photoacoustic spectroscopy, 144
Photochemical crosslinking, 267–70
Photocrosslinking. See Photochemical crosslinking
Photocycloaddition polymerization. See Photopolymerization
Photoinitiators, 172
Photonics. See Nonlinear optical properties
Photopolymerization, 459–60
PI. See Polyimide
Pigments. See Additives
α-Piperidone. See Valerolactam
Plasma polymerization, 169
Plasticizers, 121–24
Plastics, 25–27
Pleated sheet, 496
PMR. See Bisnadimides
Poled polymer. See Nonlinear optical properties
Polyacetal, 322-24
Polyacetic acid, 117-18, 313
Polyacetylene, 117-19
conductivity of, 119
metathesis polymerization synthesis, 254-55
precursor polymer synthesis, 277-78
Polyacetylenes, 451-52
aromatic polymers from, 452
Polyacrolein, 313
Polyacrylamide, 168, 262
Polyacrylates, 341-42
Poly(acrylic acid), 17, 168
Polyacrylonitrile, 168
Poly(alkylene polysulfide), 331-32
commercial uses of, 310
Poly(alkylene sulfide). See Polysulfides
Polyallomers. See Ethylene-propylene block copolymers
Poly(allyl acetate), 176
Poly(amic acid), 384
Polyamidehydrazides, 382
Polyamides, 364-78
biodegradable, 376
commercially important, 365-66
from diisocyanates, 372-73
from ketene aminals, 373
from lactams, 369-72
from polycondensation reactions, 366-69
polyureas, 377-78
properties of, 374-76
Polyamidines, 449
Polyamidoamine, 301-2
Polyamines, 461-64
Polyampholytes, 469
Polyanhydrides, 460-61
Polyaniline, 462
conductivity of, 119
Polyanthrazolines, 421
Polyarylsulfone, 462
Polybenzimidazole, 415-16
glass transition temperature of, 72-73
thermal stability of, 107-8
Polybenzothiazoles, 417
Polybenzoxazoles, 417
Poly(bisphenol A isophthalate), 342
Poly(bisphenol A terephthalate/isophthalate), 340
Polyblend. See Polymer blends
Polybutadiene, 189-90, 206
commercial uses for, 226
glass transition temperature of, 74, 82
limiting oxygen index of, 156
Poly(1-butene), 235-36
Poly(butylene terephthalate), 339
Polycaprolactam. See Nylon 6
Polycaprolactone, 340, 350
Polycapryllactam. See Nylon 8
Polycarbamate. See Polyurethanes
Polycarboxamides, 447-49
Polycarbonates, 340, 346-48
charge-transfer type, 465-66
from cyclic oligomers, 351-52
glass transition temperature of, 72-73, 346-47
limiting oxygen index of, 156
mechanical properties of, 105
Polycarbophosphazene, 434
Polycarbonatesiloxanes, commercial uses of, 426
Polycatenanes, definition of, 9
Polychloral, 312-13
Polychloroprene, 190
commercial uses for, 168
crystalline melting temperature of, 82
glass transition temperature of, 74, 82
Poly(p-chlorostyrene)-graft-polyacrylonitrile, 274
Polycyanoacrylate, 206
Polycyanurates, 413
Poly(1,3-cyclohexadiene), 453
Poly(1,4 cyclohexylenedimethylene suberamide), 365
Poly(1,3-cyclopentenylenylylenevinylene), 236, 254
Polycarbophosphazene, 431-32
Polycyclopentadiene, 254
Poly(1,4-dihydroxymethylcyclohexyl terephthalate), 340
Polydispersity index, 37, 294-95
Polycyclic hydrocarbons, 414
Polyelectrolytes, 120, 468-69
Polyester resins. See Crosslinked polyesters
Polyesters, 338-58
block copolymers of, 343-44
by polycondensation, 341-48
commercially available, 339-40
crosslinked, 354-58
from cyclic monomers, 348–52
glass transition temperature of, 72–73
hyperbranched, 353–54
ionomers, 467
linear, 341–53
melting points of, 344–45
microbial, 352–53
polycarbonates, 346–48
properties of, 106
unsaturated, 356–58
Polyetheretherketone, 321–22
Polyetherimide, 321–22
Polyetherketone, 321
Polyethers, 309–29
by chain-reaction polymerization, 309–13
by ring-opening polymerization, 314–20
by step-reaction polymerization, 321–29
commercial uses for, 310
epoxy resins, 326–29
from aldehydes, 309–13
from glycols and bisphenols, 321–22
polyacetals and polyketals, 322–24
poly(phenylene oxide), 324–25
stereochemistry of, 313–14
Polyethersulfone, 332
Poly(ethyl acrylate), 168
Polyethylene, 17
glass transition temperature of, 71–72
limiting oxygen index of, 156
mechanical properties of, 105–6
Polyethylene, high-density, 26, 234–35
commercial uses for, 235
pyrogram of, 155
Polyethylene, low-density, 26, 181
commercial uses for, 168
Polyethylene, medium-density, 26
Polyethylene, ultrahigh-molecular-weight, 235
Poly(ethylene adipate), crystalline melting temperature of, 82
Poly[ethylene-co-(vinyl acetate)], 154
Poly(ethylene glycol), 5
Poly(ethylene naphthalene-2,6-dicarboxylate), 339–40
Poly(ethylene oxide), limiting oxygen index of, 156
Poly(ethylene succinate), 5
Poly(ethylene terephthalate), 339–42
crystalline melting temperature of, 82
mechanical properties of, 105
Poly(ferrocenylethylene), 437
Poly(ferrocenylsilane), 437
Polyformal. See Polyoxymethylene
Polyformaldehyde. See Polyoxymethylene
Polyfuran, 412
Polyglutaraldehyde, 313
Poly(glycolic acid), 340, 343, 350–51
Polyglycolide. See Poly(glycolic acid)
Poly(7-heptanamide). See Nylon 7
Poly(hexafluoropropylene-co-(vinylidene fluoride)), 113
Poly(hexamethylene adipamide). See Nylon 66
Poly(hexamethylene azelamide). See Nylon 69
Poly(hexamethylene dodecanediamide). See Nylon 612
Poly(hexamethylene phosphonamide), 368–69
Poly(hexamethylene sebacamide). See Nylon 610
Poly(hexamethylene-m-benzenedisulfonamide), 368
Poly(hydantoin), 418
Polyhydrazides, 382, 414
Poly(4-hydroxybenzoate), 339, 341–42
Poly(3-hydroxybutyrate), 352
Poly(3-hydroxybutyrate-valerate), 340, 353
Polyimidazoles, 419–20
Poly(1,3-imidazolidine-2,4,5-trione). See Poly(parabanic acids)
Polyimidazopyrrolones, 417
Polyimides, 382–87
addition type, 383–87
condensation type, 383–85
from bismaleimides, 385–86
from bisnadiaones, 386–87
thermal stability of, 107
Polyimidesulfone, 385
Polyimines, 449
Polyisobutylene, 206
Polyisocyanides, 449
Polyisocyanurates, 381
Polyisoprene, 189–90, 206
commercial uses for, 236
crystalline melting temperature of, 82
glass transition temperature of, 74, 82
hydroboration of, 262
Polyketals, 322–24
Poly(lactic acid), 340, 350–51
Polylactide. See Poly(lactic acid)
Polylauryllactam. See Nylon 12
Polymer, definition of, 3
Polymer alloys.
Polymer blends, 87–91

Polymer degradation, 276–79

Polymer solutions, 37–42

Polymeric chelates, 438, 441–42

Polymeric sulfur, 425

Polymerization, definition of, 3

Polymers, history of, 5–6

Poly(methacrylic acid), 168, 262

Poly(methyl acrylate), 168

Poly(methylene-4,4′-dicyclohexylene dodecanediamide), 365

Poly(methyl methacrylate), 19

ceiling temperature of, 193

commercial uses for, 168

depropagation, 278

glass transition temperature of, 79

limiting oxygen index of, 156

mechanical properties of, 105

NMR spectra of, 134–36

stereochemistry of, 187, 223–24

Poly(4-methyl-1-pentene), 235–36

Poly(α-methylstyrene), 17

Poly(p-methylstyrene), 168

Poly(methyl vinyl ether), melting temperature of, 82

Poly(N-acylamidrazone), 414–15

Poly(N-isopropylacrylamide), 117

Poly(9-nonanamide).
See Nylon 9

Polynucleotides.
See Nucleic acids

Poly(N-vinylcarbazole), 117

Polyoctenamer.
See Poly(1-octene)

Poly(1-octene), 236, 254

Polyolefins, definition of, 16

Poly(1,3,4-oxadiazole), 414–15

Polyoxazole, thermal stability of, 107

Poly(ox-2,6-dimethyl-1,4-phenylene).
See Poly(phenylene oxide)

Polyoxymethylene, 311–12

limiting oxygen index of, 156

Poly(parabanic acids), 418

Polypentenamer, hydroformylation of, 262

Poly(1-pentene), 17

Polypeptides.
See Proteins

Poly(p-phenylene), 452–54, 458

conductivity of, 119

from precursor polymers, 453

thermal stability of, 107

Poly(m-phenylene isophthalamide), 365, 368

Poly(phenylene oxide), 90, 324–25

limiting oxygen index of, 156

thermal stability of, 107

Polyphenylenes, 453

Poly(p-phenylene sulfide), 329

thermal stability of, 107

Poly(p-phenylene terephthalamide), 365, 368

Poly(p-phenylenevinylene), conductivity of, 119

Polyphenylsilsequioxane, 429

Polyphosphazenes, 113, 431–34

commercial uses for, 426

Polyphosphonamides, 368–69

Polyphthalocyanines, 413

Polypropylene, 19

commercial uses for, 235–36

glass transition temperature of, 71–72

limiting oxygen index of, 156

mechanical properties of, 105–6

Polypyrazines, 419

Polypyrazoles, 419–20, 452

Polypyrrole, 412, 452

conductivity of, 119

Polyquinolines, 421

Polyquinoxaline, 419

thermal stability of, 107–9

Polyrotaxanes, definition of, 9

Polysaccharides, 484–92

Cellulose, 484–89

starch, 489–90

Polysilanes, 430–31

commercial uses for, 426

Polysilastere, 431

Polysiloxanes, 427–30

commercial uses for, 426

limiting oxygen index of, 156

Polystannanes, 431

Polystyrene, 17

commercial uses for, 168, 235

ceiling temperature of, 193

chloromethylation of, 261

crosslinked, 456

crystalline melting temperature of, 82

glass transition temperature of, 71–72

limiting oxygen index of, 156

mechanical properties of, 105

oxazoline-substituted, 275–76

thermal polymerization of, 372
Polysulfides, 329-31
Polysulfonamides, 368, 371-72
Polysulfones, 321-22, 332
commercial uses for, 311
Poly(sulfur nitride), 117, 426-27
conductivity of, 119
Polyterpene resins, 206
Polytetrafluoroethylene, 17, 113
commercial uses for, 168
limiting oxygen index of, 156
mechanical properties of, 105
Poly(tetramethylene adipamide). See Nylon 46
Poly(1,3,4-thiadiazole), 414
thermal stability of, 107
Polythiazoles, TGA thermograms of, 153
Polythiazyl. See Poly(sulfur nitride)
Polythioacetals, 330-31
Polythiocarbonates, 348
Poly(thiocarbonyl fluoride), 330
Polythioketals, 330-31
Polythiophene, 412-13, 452
conductivity of, 119
Polythiophosphazenes, 434
Poly(as-triazines), 420
Poly(1,2,4-triazole), 414-15
Polytriazolines, 420
Poly(trichloroacetaldehyde). See Polychloral
Polytri(chloro)fluoroethylene, 168
Poly(trimethylene terephthalate), 339-40
Poly(2,4,4-trimethylhexamethylene terephthalate), 366, 369
Poly(2,4,6-triphenylbenzyl methacrylate), 188
Poly(11-undecanamide). See Nylon 11
Polyurea ionomers, 467
Polyureas, 377-78
Polyurethanes, 378-81
coatings, 381
elastomeric fibers, 379
foams, 380-81
self-extinguishing, 381
ionomers, 467
Poly(vinyl acetate), 168
Poly(vinyl alcohol), 261-62
degradation of, 130
glass transition temperature of, 71-72, 82
limiting oxygen index of, 156
synthesis of, 261-62
Poly(vinyl alcohol-graft-polyethylene), 274
Poly(vinyl amine), 262
Poly(4'-vinylbenzo-18-crown-6), 441
Poly(vinyl bromide), head-to-head, 262
Poly(vinyl butyral), 264-65
Poly(vinyl chloride), 19
commercial uses for, 168
crystalline melting temperature of, 82
dehydrochlorination of, 262
glass transition temperature of, 71-72
limiting oxygen index of, 156
mechanical properties of, 105
thermogram of, 151
Poly(vinyl ethers), 206
Polyvinylferrocene, 436
Poly(vinyl fluoride), 168, 176
Poly(vinylidene chloride), 168
limiting oxygen index of, 156
Poly(vinylidene cyanide), 217-18
Poly(vinylidene fluoride), 113, 168, 176
Poly(2-vinyl naphthalene), glass transition temperature of, 71-72
Poly(p-xylene), 454-55
POM. See Polyoxymethylene
Popcorn polymerization, 174
PP. See Polypropylene
PPO. See Poly(phenylene oxide)
PPS. See Poly(phenylene sulfide)
Preform, 98
Prepreg. See Preform
Priestley, Joseph, 478
Primary radical termination, 177
Processing modifiers. See Additives
Promoter, 170, 317
Promoters. See Additives
β-Propiolactone, polymerization of, 349-50
Propiosultam, polymerization of, 371-72
Propylene oxide, polymerization of, 315
Prosthetic group, 495
Proteins, 492-502
amino acids from, 492-95
classification of, 495
conjugated, 495
crosslinking of, 502
primary structure, 495
quaternary structure, 498
regenerated, 502
secondary structure, 496
synthesis of, 498-500
tertiary structure, 496, 498
Index

PS. See Polystyrene
Pseudobisdienes. See Diels–Alder polymerization
Pseudocationic polymerization, 210
Purine, 504
PVC. See Poly(vinyl chloride)
Pyrimidine, 504
Pyrogallol, 403–4
Pyrolysis-gas chromatography, 153–54
Pyromellitic dianhydride, 328
polyimides from, 383–85
2-Pyrrolidone. See Butyrolactam

Q-e scheme, 198–99

Racemic structures, 75
Radial copolymers. See Star-block copolymers
Radiation crosslinking, 267
Raman spectroscopy, 133–34
Random chain scission. See Thermal degradation
Random copolymer, definition of, 7
Rayon, 486–87
Reaction injection molding, 98, 254, 380
Reactive end groups, 109–10
Reactive oligomer, definition of, 7
Recycling of polymers, 30–31
Redox initiators, 171
Reduced osmotic pressure. See Membrane osmometry
Reduced viscosity, 51
Refractive index, determination of molecular weight by, 48
Regenerated cellulose, 485–86
Regenerated protein, 502
Reinforced reaction injection molding, 98
Reinforcing fillers. See Additives
Relative viscosity, 51
Repeating unit, definition of, 7
Resist technology, 114–15
Resite. See Phenol formaldehyde polymers
Resoles. See Phenol-formaldehyde polymers
Resorcinol, 403
Reversible crosslinking, 271

Rheology, 63–70
Ribonucleic acid. See Nucleic acids
Ribosomal RNA. See Nucleic acids
RIM. See Reaction injection molding
Ring-forming reactions, 263–65
Ring-opening metathesis polymerization, 253–55
Ring-opening polymerization, 11, 304–6
RNA. See Nucleic acids
Rockwell test. See Hardness
ROMP. See Ring-opening metathesis polymerization
Rosin, 483
RRIM. See Reinforced reaction injection molding
RTV rubber. See Polysiloxanes
Rubber, 28–29, 476–79

SAN. See Styrene-acrylonitrile copolymer
Saturated polyester resins, 354–56
SAXS. See X-ray scattering
SBR. See Styrene-butadiene rubber
Scanning electron microscopy, 143
Scanning force microscopy. See Atomic force microscopy
Scanning tunneling microscopy, 148
Schiff base polymers. See Polyimines
Schweitzer’s reagent, 485–86
SEC. See Gel permeation chromatography
Secondary-ion mass spectrometry, 147–48
Second-order transition temperature. See Glass transition temperature
Self-extinguishing, definition of, 110
SEM. See Scanning electron microscopy
Semi-interpenetrating polymer networks, 88
Semiladder polymer, definition of, 9
Semipermeable membrane. See Membrane osmometry
SFM. See Atomic force microscopy
Shear modulus, 65–66
Shear rate, 65–66
Shear strain, 65–66
Shear stress, 64–65
Shear thickening, 66
Shear thinning, 66–67
Shellac, 481–82
Shish kebab morphology. See Epitaxial morphology
Silicone oils, 428
Silicone rubber, 428–29
Silicone-ether block copolymers, 429–30
Silicones. See Polysiloxanes
Silk, 500–502
modification of, 501–2
Simple rule of mixtures, 89
SIMS. See Secondary-ion mass spectrometry
Simultaneous interpenetrating polymer networks, 88
SIN. See Simultaneous interpenetrating polymer networks
Single-site catalysts. See Metallocene catalysts
Size exclusion chromatography. See Gel permeation chromatography
Slip agents. See Additives
SMA. See Styrene-maleic anhydride copolymer
Smart polymers, 117
Smith–Ewart kinetics, 185–86
Soda cellulose. See Alkali cellulose
Sol–gel process, 430
Solid phase synthesis, 261, 498–500, 508–510
Solitons, 118
Solubility parameter, 38
Solution blends, 88
Solution polymerization, 174
Solvent gradient chromatography. See Fractional solution
Solvent polymerization, 299
Sparging, 299
Specific refractive increment. See Light scattering
Specific viscosity, 51
Spectroscopic analysis, 130–40
Spherulites, definition of, 81
Spherulitic morphology, 81
Spinning. See Spinning
Spinning, 99–100
Spiro polymers, 323, 331
Star-block copolymers, 227
Starburst polymers. See Dendrimers
Starch, 489–90
derivatives of, 490
Star polymers, definition of, 8
Static equilibrium method. See Membrane osmometry
Staudinger, Hermann, 5
Steel, properties of, 106
Step-growth polymerization. See Step-reaction polymerization
Step-ladder polymer. See Semiladder polymer
Step-reaction addition polymerization, 15
Step-reaction copolymerization, 297–98
Step-reaction polymerization, 12–13, 285–309
copolymerization, 297–98
definition of, 11
dendrimers, 301–3
kinetics of, 285–90
molecular weight distribution, 292–95
network polymerization, 295–97
stoichiometric imbalance, 290–92
techniques of, 298–301
Stereoblock, definition of, 74
Stereochemistry of polymerization
aldehyde polymerization, 313–14
anionic, 223–25
cationic, 213–15
epoxides, 320
free radical, 186–88
heterogeneous Ziegler–Natta, 242–45
homogeneous Ziegler–Natta, 248–49
with metallocene catalysts, 248–49
STM. See Scanning tunneling microscopy
Stoichiometric imbalance, 290–92
Stress relaxation, 104
Styrenated alkyds, 356
Styrene-acrylonitrile copolymer, 168
Styrene-butadiene block copolymers, 206
Styrene-butadiene copolymer, emulsion polymerization, 175
Styrene-butadiene rubber, 168, 206
Styrene-maleic anhydride copolymer, 168
Succinite. See Amber
Sulfur, 425
Supported metal oxide catalysts, 251
Supramolecular assembly, definition of, 9
Surface analysis, 141–49
Surface property modifiers. See Additives
Surface resistivity, 159–60
Suspension polymerization, 174
Syndiotactic, definition of, 74
Synthetic natural rubber, 224–25
Index

T_c. See Ceiling temperature
T_g. See Glass transition temperature
T_m. See Crystalline melting point
Tactic dyad, 75–76
Tactic placement. See Tactic dyad
Tactic triad, 75–76
Tall oil-derived polymers, 482–83
Tall oil fatty acids, 483
Tangential stress. See Shear stress
Tannin, 403–4
Tear resistance, 101, 159
Telechelic polymer, definition of, 7
Telomerization, 183
Telomers, 183
Tenacity, 106
Tensile strength, 101–6
Tetrahydrofuran, polymerization of, 315
TGA. See Thermogravimetric analysis
Thermal analysis, 149–56
Thermal degradation, 277–78
Thermal gradient turbidimetry. See Fractional precipitation
Thermal polymerization, 172
Thermal stability, 106–10
Thermogravimetric analysis, 152–53
Thermomechanical analysis, 152
Thermoplastic elastomers, 28, 87–88
Thermosetting, definition of, 10
Theta state, 41
Theta temperature, 41
Thickening agents. See Additives
Thin-layer chromatography, molecular weight distribution by, 58
Thiokol rubbers. See Poly(alkylene polysulfide)s
Thixotropy, 66
Threo structures, 76–78
Thymine, 504
TLC. See Thin-layer chromatography
TMA. See Thermomechanical analysis
Topological bonding, 90–91
TPE. See Thermoplastic elastomer
Transdermal patches, 117
Transfer RNA. See Nucleic acids
Tri-2-ethylhexyl trimellitate. See Plasticizers
Triblock copolymer, definition of, 7
Trimer acids, 483

2,2,4-Trimethylpentane-1,3-diol, 112–13
Trioxane, 309, 311
polymerization of, 314–15
Trommsdorff effect, 180
Turbidimetry. See Fractional precipitation

UF. See Urea-formaldehyde polymers
UHMWPE. See Polyethylene, ultrahigh-molecular-weight
Ultracentrifugation, 50
Ultraviolet stabilizers. See Additives
Ultraviolet-visible spectroscopy, 139
Universal calibration parameter, 55–57
Unperturbed dimension, 40–41
Unsaturated polyesters, 356–58
recycling of, 358
Uracil, 504
Urea, 395
Urea-formaldehyde polymers, 404–6
Uridine, 504

Vapor pressure osmometry, 46
Velocity gradient. See Shear rate
Vinylethylhexene dioxide, in epoxy resins, 327
Vinylferrocene, 436
Vinylidene, definition of, 16
Vinyl polymers
block and graft copolymers of, 272–76
chlorination of, 260
chlorosulfonation of, 260–61
crosslinking of, 265–72
definition of, 16
degradation of, 276–79
fluorination of, 261
functional group reactions in, 260–63
reactions of, 259–79
ring-forming reactions of, 263–65
Vinylruthenocene, 436
Viscoelasticity. See Rheology
Viscometry, 50–53, 69
Viscose process. See Xanthate process
Viscose rayon, 486
Viscosity average molecular weight, 52–53
Viscosity number. See Reduced viscosity
Viscosity ratio. See Relative viscosity
Vitrification, 63
Index

Vitrinite, 480
Volume resistivity, 159
Vulcanization, 265–67

Water-in-oil emulsion. See Emulsion polymerization
Watson, James, 505
WAXS. See X-ray scattering
Weatherability, 159
Weight average molecular weight, 35–37
 determination of, 48–50
 by ultracentrifugation, 50
 by light scattering, 48
Wet spinning, 99
Wetting agents. See Additives
Wilkins, Maurice, 505
Wittig reaction, unsaturated polymers by, 450
Wood flour. See Additives
Wool, 500–502
 modification of, 501–502
 tensile strength of, 106

Xanthate process, 485–86
XPS. See Electron spectroscopy for chemical analysis
X-ray diffraction. See X-ray scattering
X-ray photoelectron spectroscopy. See Electron spectroscopy for chemical analysis
X-ray scattering, 140–41
Xylan, 492

Zein, 502
Ziegler, Karl, 6, 74, 234
Ziegler–Natta catalysts, 236–38, 245–46
 heterogeneous, 236–38
 homogeneous, 245–46
Ziegler–Natta polymerization, 236–51
 copolymerization, 249–51
 epoxides, 318–20
 heterogeneous, 236–45
 homogeneous, 245–49
Zimm plots, 49