Contents

Preface xiii
Acknowledgments xv
Introduction xvii

Chapter 1. HVAC Engineering Fundamentals: Part 1
1.1 Introduction 1
1.2 Problem Solving 1
1.3 Value Engineering 2
1.4 Codes and Regulations 5
1.5 Fluid Mechanics 6
1.6 Thermodynamics 7
1.7 Heat Transfer 7
1.8 Psychrometrics 8
1.9 Sound and Vibration 9
1.10 Energy Conservation 11
1.11 Summary 13
References 13

Chapter 2. HVAC Engineering Fundamentals: Part 2
2.1 Introduction 15
2.2 Comfort 15
2.3 Use of Psychrometrics 16
2.4 HVAC Cycles 16
2.5 Control Strategies 18
2.6 Architectural, Structural, and Electrical Considerations 18
2.7 Conceptual Design 19
2.8 Environmental Criteria for Typical Buildings 19
2.9 Designing for Operation and Maintenance 23
2.10 Summary 24
References 24
Chapter 7. Design Procedures: Part 5—Central Plants

7.1 Introduction

7.2 General Plant Design Concepts

7.3 Central Steam Plants

7.4 Central Hot Water Plants

7.5 High-Temperature Hot Water Plants

7.6 Fuel Options and Alternative Fuels

7.7 Chilled Water Plants

7.8 Thermal Storage Systems

7.9 Heat Recovery Plants

7.10 Central Plant Distribution Arrangements

7.11 Cogeneration Plants

7.12 Summary

References

Chapter 8. Design Procedures: Part 6—Automatic Controls

8.1 Introduction

8.2 Controls Fundamentals

8.3 Control Devices

8.4 Instrumentation

8.5 Typical Control Systems

8.6 Electrical Interfaces

8.7 Computer-Based Controls

8.8 Control Symbols

8.9 Summary

References

Chapter 9. Equipment: Part 1—Cooling

9.1 Introduction

9.2 Refrigeration Cycles

9.3 Compressors

9.4 Chillers

9.5 Condensers

9.6 Cooling Towers

9.7 Cooling Coils

9.8 Radiant Cooling

9.9 Evaporative Cooling
Chapter 10. Equipment: Part 2—Heating

10.1 Introduction
10.2 General
10.3 Boiler Applications
10.4 Boiler Types
10.5 Combustion Processes and Fuels
10.6 Fuel-Burning Equipment
10.7 Boiler Feedwater and Water Treatment Systems
10.8 Boiler Codes and Standards
10.9 Boiler Design
10.10 Acceptance and Operational Testing
10.11 Direct- and Indirect-Fired Heating Equipment
10.12 Heat Exchangers—Water Heating
10.13 Heat Exchangers—Air Heating
10.14 Unit Heaters and Duct Heaters
10.15 Terminal Heating Equipment
10.16 Heat Pumps
10.17 Heat Recovery and Reclaim
10.18 Solar Heating
10.19 Humidification
10.20 Summary

References

Chapter 11. Equipment: Part 3—Air-Handling Systems

11.1 Introduction
11.2 AHU System Arrangements
11.3 Package Air-Handling Units
11.4 Built-Up (Field-Assembled) AHU
11.5 Terminal Units
11.6 Individual Room AHUs
11.7 Humidity Control
11.8 Control of Outside Air Quantity
11.9 Effects of Altitude
11.10 Exhaust Systems
11.11 Smoke Control
11.12 Summary

References

Chapter 12. Electrical Features of HVAC Systems

12.1 Introduction

References
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2 Fundamentals of Electrical Power</td>
<td>397</td>
</tr>
<tr>
<td>12.3 Common Service Voltages</td>
<td>398</td>
</tr>
<tr>
<td>12.4 Power Factor</td>
<td>399</td>
</tr>
<tr>
<td>12.5 Motors</td>
<td>400</td>
</tr>
<tr>
<td>12.6 Variable-Speed Drives</td>
<td>401</td>
</tr>
<tr>
<td>12.7 HVAC—Electrical Interface</td>
<td>402</td>
</tr>
<tr>
<td>12.8 Uninterruptible Power Supply</td>
<td>405</td>
</tr>
<tr>
<td>12.9 Standby Power Generation</td>
<td>407</td>
</tr>
<tr>
<td>12.10 Electrical Room Ventilation</td>
<td>408</td>
</tr>
<tr>
<td>12.11 Lighting Systems</td>
<td>408</td>
</tr>
<tr>
<td>12.12 National Electric Code</td>
<td>409</td>
</tr>
<tr>
<td>12.13 Summary</td>
<td>410</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 13. Design Documentation: Drawings and Specifications

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>411</td>
</tr>
<tr>
<td>13.2 The Nature of Contracts</td>
<td>412</td>
</tr>
<tr>
<td>13.3 Drawings</td>
<td>412</td>
</tr>
<tr>
<td>13.4 Specifications</td>
<td>415</td>
</tr>
<tr>
<td>13.5 Summary</td>
<td>427</td>
</tr>
<tr>
<td>References</td>
<td>427</td>
</tr>
</tbody>
</table>

Chapter 14. After Design: Through Construction to Operation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>429</td>
</tr>
<tr>
<td>14.2 Participation during Construction</td>
<td>429</td>
</tr>
<tr>
<td>14.3 Commissioning</td>
<td>434</td>
</tr>
<tr>
<td>14.4 Summary</td>
<td>436</td>
</tr>
<tr>
<td>References</td>
<td>437</td>
</tr>
</tbody>
</table>

Chapter 15. Technical Report Writing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>439</td>
</tr>
<tr>
<td>15.2 Organization of a Report</td>
<td>439</td>
</tr>
<tr>
<td>15.3 Writing with Clarity</td>
<td>441</td>
</tr>
<tr>
<td>15.4 Use of Tables and Figures</td>
<td>441</td>
</tr>
<tr>
<td>15.5 Printing and Binding</td>
<td>442</td>
</tr>
<tr>
<td>15.6 Letter Reports</td>
<td>444</td>
</tr>
<tr>
<td>15.7 Summary</td>
<td>444</td>
</tr>
<tr>
<td>Reference</td>
<td>445</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>447</td>
</tr>
<tr>
<td>16.2 Terms in Fluid Mechanics</td>
<td>447</td>
</tr>
<tr>
<td>16.3 Law of Conservation of Mass</td>
<td>448</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4 The Bernoulli Equation (Law of Conservation of Energy)</td>
<td>449</td>
</tr>
<tr>
<td>16.5 Flow Volume Measurement</td>
<td>450</td>
</tr>
<tr>
<td>16.6 Summary</td>
<td>451</td>
</tr>
<tr>
<td>References</td>
<td>452</td>
</tr>
</tbody>
</table>

Chapter 17. Engineering Fundamentals: Part 2—Thermodynamics 453

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>453</td>
</tr>
<tr>
<td>17.2 Thermodynamics Terms</td>
<td>453</td>
</tr>
<tr>
<td>17.3 First Law of Thermodynamics</td>
<td>454</td>
</tr>
<tr>
<td>17.4 Second Law of Thermodynamics</td>
<td>455</td>
</tr>
<tr>
<td>17.5 Efficiency</td>
<td>456</td>
</tr>
<tr>
<td>17.6 Coefficient of Performance</td>
<td>456</td>
</tr>
<tr>
<td>17.7 Specific Heat C_p</td>
<td>457</td>
</tr>
<tr>
<td>17.8 Summary</td>
<td>458</td>
</tr>
<tr>
<td>References</td>
<td>458</td>
</tr>
</tbody>
</table>

Chapter 18. Engineering Fundamentals: Part 3—Heat Transfer 459

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Introduction</td>
<td>459</td>
</tr>
<tr>
<td>18.2 Heat Transfer Modes</td>
<td>459</td>
</tr>
<tr>
<td>18.3 Thermal Conduction</td>
<td>460</td>
</tr>
<tr>
<td>18.4 Thermal Convection</td>
<td>462</td>
</tr>
<tr>
<td>18.5 Thermal Radiation</td>
<td>464</td>
</tr>
<tr>
<td>18.6 Latent Heat and Moisture</td>
<td>466</td>
</tr>
<tr>
<td>18.7 Summary</td>
<td>467</td>
</tr>
<tr>
<td>References</td>
<td>467</td>
</tr>
</tbody>
</table>

Chapter 19. Engineering Fundamentals: Part 4—Psychrometrics 469

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 Introduction</td>
<td>469</td>
</tr>
<tr>
<td>19.2 Thermodynamic Properties of Moist Air</td>
<td>469</td>
</tr>
<tr>
<td>19.3 Tables of Properties</td>
<td>471</td>
</tr>
<tr>
<td>19.4 Psychrometric Charts</td>
<td>475</td>
</tr>
<tr>
<td>19.5 HVAC Processes on the Psychrometric Chart</td>
<td>475</td>
</tr>
<tr>
<td>19.6 The Protractor on the ASHRAE Psychrometric Chart</td>
<td>481</td>
</tr>
<tr>
<td>19.7 Effects of Altitude</td>
<td>482</td>
</tr>
<tr>
<td>19.8 Summary</td>
<td>484</td>
</tr>
<tr>
<td>References</td>
<td>484</td>
</tr>
</tbody>
</table>

Chapter 20. Engineering Fundamentals: Part 5—Sound and Vibration 485

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Introduction</td>
<td>485</td>
</tr>
<tr>
<td>20.2 Definitions</td>
<td>485</td>
</tr>
<tr>
<td>20.3 Methods of Specifying and Measuring Sound</td>
<td>486</td>
</tr>
<tr>
<td>20.4 Sound and Vibration Transmission</td>
<td>488</td>
</tr>
<tr>
<td>20.5 Ambient Sound-Level Design Goals</td>
<td>491</td>
</tr>
</tbody>
</table>
Index

A-weighted sound level (dB A), 494
Absorption refrigeration cycle, 289
Accessibility, 23, 83
ADP (see Apparatus dew point)
Adaptive computer programs, 283
Adiabatic saturation, 479
Air:
 contaminants, 502
 density, 92, 471
 moist, 16, 469
 properties of, 469
 quality, 143, 501–504
 venting, 178, 179
 volume, 471
Air conditioning, definition, xvii
Air-cooled condenser, 298–299
Air distribution:
 high flow rates, 137
 laminar flow, 137–140
Air ducts, 109 ff
 circular equivalents for friction and capacity, 115–117
 correction factors for roughness, 113–114
 design of, 109
 design velocities, 121–122
 dynamic losses, 115
 fire and smoke control, 115–118
 friction losses, 111–112
 heat transfer coefficients, 120
 insulation for, 118–119
 leakage, 119
 pressure gradients in, 121–122, 125–127
 sizing methods, 122–125
 sound attenuation in, 496
 velocity patterns in, 111
Air factor, 31–33
Air flow rate, calculation of, 71
Air friction chart, 112
Air-handling system and unit (AHU), 84, 367
 blow through, 368
 built-up (field-assembled), 384–386
 control of outside air quantity for, 266–269, 392
Air-handling system and unit (AHU) (Cont.):
 double-duct (dual-duct), 375
 draw-thru, 368
 effects of altitude upon, 90, 314, 395
 humidity control in, 371, 384
 individual room, 389
 induction unit, 381
 multizone, 371
 packaged, 84, 382, 384
 rooftop, 382
 single-zone, 370
 smoke control, 395
 split system, 383
 terminal units for, 386–388
 variable volume (VAV), 75, 272–275, 375–379
 zone reheat, 371
Air separation, 179–180
Altitude:
 changes due to, 90, 146
 equipment selection adjustments, 314
 psychrometric charts for, 482
Ammonia, 289
Analog, 239
Apparatus dew point (ADP), 74, 308
Approach, 301
Architectural, structural and electrical considerations, 18
Attenuation, sound, 485, 495–500
Automatic controls, 223
 computer-based, 278–284
 combustion, 331
 controller gains, 227
 dampers, 262–254
 devices for, 229 ff
 electrical interface to, 278–279, 402
 energy sources for, 225
 instrumentation for, 265
 legend and symbols for, 284
 loops, 224
 modes, 225
 of motors, 254–256
 sensors, 229 ff
Automatic controls (Cont.):
steam plants, 193 ff
strategies, 18
typical systems for, 265 ff
valves, 245-250
Auxiliary control devices, 257 ff
Axial fan, 105

Back-flow prevention valve, 164
Ball valve, 164
Baseboard radiation, 346
Bellows, 231, 234
Bernoulli equation, 449
Bidding, 430
Bimetal sensor, 240-241
Blackbody, 465
Bleed-type sensor/controller, 231-232
Boilers:
acceptance and operational testing, 336
codes and standards for, 334
design of, 336
feedwater and water treatment systems for, 332-334
steam quality, 325
types of, 323-324
Bourdon tube, 235
Bridge circuit, 242-244
Brines and glycols, 152 ff
properties of, 152 ff
thermal conductivity of, 155-156
Building related illnesses, 502
Building structure, sound transmission through, 495
Built-up (field-assembled) AHU, 384-386
Bulb and capillary sensor, 229-231
Burner (for boiler), 329-332
Butterfly valve, 163
Bypass box, 387
Bypass factor (coil), 74, 308

Calculations:
computer use in, 25
forms for, 28-30, 71, 72
empirical, 26-27
load, 25 ff
manual, 26 ff
Capacity control, 293-295
Cast-iron sectional boiler, 323
Cavitation, 448
Central plant, 83, 191
chilled water, 199 ff
control systems, 277

Central plant (Cont.):
design configurations for, 201 ff
distribution systems, 213 ff
high-temperature water, 197-198
hot water, 195-197
steam, 193
Centrifugal compressors, 295
Centrifugal fans, 97 ff
Centrifugal pumps, 181 ff
Cfm per square foot, check values, 76
Change order, 432
Chemical dehumidification, 392
Chemical treatment:
boilers, 332 ff
cooling towers, 302-303
Chilled mirror dewpoint sensor, 233
Chilled water plant, 199 ff
Chillers, 296-298
Climatic conditions in the United States, 31-32
Closed-circuit cooling tower, 304
Closed expansion tank, 173-178
Closed control loop, 225
Coal burners, 329-332
Codes and standards, boiler, 334
Coefficient of performance, 212, 289, 456
Cogeneration, 215-219
Coil heating capacity versus hot water flow rate, 247-248
Coil-loop heat recovery system, 352
Coils:
bypass factor of, 74, 308
cooling, 305 ff
heating, 339
selection of, 310
altitude effect on, 314
Combustion, 325
air preheater, 195
efficiency, 326
excess air in, 326
fuels for, 327
ignition, oil-fired, 330
process, 325
Comfort, 15-16
design requirements for, 81
optimum conditions for, 9
Commercial office design, 20
Commissioning, 434, 503
Compression ratio, 292
Compressor, 291 ff
centrifugal, 295
helical rotary (screw), 294
Compressor (Cont.):
hermetic, 295
reciprocating, 292
rotary, 293
scroll, 294

Computer:
automatic control with, 278 ff
compatibility of systems, 283
direct digital control (DDC), 282
drafting and specifications with, 415, 426
equipment selection with, 92–93
load calculation with, 25–26
software, 283

Computer-aided design and drafting (CADD), 415

Conceptual design, 19

Condenser, 298
air-cooled, 298
evaporative, 299–300
water-cooled, 299–300

Condenser heat recovery, 359

Conduction, 37, 460–462

Constant velocity (duct sizing), 122

Construction, participation during, 429

Contracts, 415, 418

Control (see Automatic controls)

Controllability, 84

Controlled device, 224, 244

Controlled variable, 224

Controller, 224, 239–244

Convection, 8, 462–464

Convective heating and cooling system, 85

Convector, 346

Cooling, 287
cycle, mechanical, 16–17
evaporative, 315–317
radiant, 314

Cooling coils, 305
altitude effects, 314
circuiting, 305
distributor, 307
direct expansion (DX), 307
selection of, 310
thermodynamics of, 307–310

Cooling load:
calculations, 25 ff
factors, 33 ff
instantaneous heat gain, 35
psychrometric charts for, 73–75
rough estimate, 26–27
ventilation, 77

Cooling load temperature difference (CLTD), 39

Cooling tower, 301–305

Costs, first cost, life-cycle cost, 82

Counterflow (versus parallel flow), 310

Criteria:
for calculations, 27, 81
for equipment selection, 81–83
for various environments, 19

Critical flow, 164

C_v valve coefficient, 249

Damper:
control, 252–254
fire, 115–118
inlet vane, 278
low leakage, 253
operator, 132
pressure drop, 255
smoke, 115–118
types of, 103, 132–135, 252–254

Deaerating feedwater heater, 333

Decibel, 486

Dehumidification, 391–392
chemical, 392
psychrometric chart for, 393

Density, 92, 160, 447, 471

Derivative mode, 228

Design:
air duct, 109
conditions for, 31
criteria, 27
documentation and follow up, 411 ff
effects of elevation, 31

Dew-point sensor, 233

Dew-point temperature, 470

Diaphragm, 234

Differential:
control, 225
operating, 225
pressure, 234

Diffuser, 129–130
selection, 130–131

Digital controller, 239

Direct digital controller, 282

Direct expansion (DX):
chiller, 297
coil, 305

Direct-fired heating, 337

Discriminator relay, 260

Distributor (for DX coil) 307

Diverting valve, 248–249
Documentation, design, 411
Double circuited coil, 305
Double-duct system (AHU), 375
Draw-through AC unit, 370
Drawings, 412–414
Dry air, 469
Dry-bulb temperature, 470
Dual-duct system (AHU), 272
Duct heater, 342–343
Ducts (see air ducts)

Economy cycle (for outside air), 266
Educational facilities, design, 21
Effective temperature, 287
Efficiency, 456
Electrical interfaces, automatic control, 278, 402–405
Electrical ladder diagram, 279
Electrical motors, 400
Empirical data:
 cfm per square foot, 76
 rough estimate of load, 26–27
Electromechanical relay, 259
Electropneumatic relay, 258
Emergency generator, 407
Emittance, 465
Energy:
 conservation, 11
 types, 453–454
Energy management and control system, 279–282
Engineered smoke control system 115, 395
Enthalpy, 454, 471
Equal friction (duct sizing), 122
Equal percentage valve, 246
Equivalent diameter, 115
Equivalent direct radiation (EDR), 345
Error signal, 224
Evaporative condenser, 299
Evaporative cooling, 315–318, 479
 psychrometric chart, 476
 two-stage, 317
Excess air, 326
Exhaust systems, 395
Expansion tank, 171–178

Fan-coil unit, 388
Fan-powered mixing box, 386
Fans (Cont.):
 backward-inclined (BI), 97–98
 centrifugal, 97 ff
 forward curved (FC), 97–98
 inlet and outlet conditions, 102
 laws, equations for, 96
 mechanical and structural considerations, 103–104
 normalized curves, 101
 performance data, 102
 propeller, 107
 radial, 97–98
 testing procedures, 98 ff
 volume control of, 375–381
Feedback, 225
Feedwater, 193–194, 332
 preheater, 194
Fenestration, 39 ff
Field interface device (FID), 280–281
Film factor, 461
Filters (air): 135 ff
 adsorbent, 503
 pressure drop through, 136
 types, 135–136
Finned pipe radiation, 346
Fire and smoke control, 395
Fire damper, 115, 118
Fire detector, 395
Fire-tube boiler, 323
First cost and life-cycle cost, 82
Flooded chiller, 296
Flow:
 measurement, 450
 sensors, 235–239
 velocity pattern for, 463
Flow versus plug lift (valve), 245–247
Fluid mechanics, 447
Fluidized bed boiler, 328
Forced draft cooling tower, 301
Forms (for calculations), 28–30, 71–72
Forward-curved fan, 97
 Fouling, 8
 Fouling factor, 463
 Four-pipe system, 213
 Freeze protection, 339–342
 Friction loss, 6
 in air ducts, 110 ff
 in piping, 165–167
Fuel-burning equipment:
 controls for, 331
 environmental considerations, 331
 ignition systems, 330
Fuel-handling equipment, 330
Fuels, 327
Gain, controller, 227–228
Gas burner, 329
Globe valve, 163
Glycol, 151, 156
Grille, 129–130
selection, 130–131
Half-circuit coil, 307
Hartford loop, 332, 335
Heat:
latent, 7, 146–147
sensible, 466, 477
specific, 7, 145
Heat exchanger, 337–338, 350, 354, 357
Heat gain:
appliance, 36
instantaneous, 36
internal, 33–35
occupants, 34
processes, 35
solar, 37 ff
Heat pump, 348–351, 390
Heat recovery system, 212, 352–359
calculations for, 353
heat-pipe, 356
psychrometric chart, 355
rotary wheel, 354
runaround, 352
Heat transfer, 7–8, 459
air duct, 119–120
conduction, 460–462
convection, 462–464
latent, 466
MED (mean temperature difference), 310–311, 353
radiation, 464–466
sensible, 466, 477
Heat wheel, 354
Heater:
air, 338
direct-fired, 337
duct, 349
indirect-fired, 337
radiant, 85–86, 343
unit, 342
water, 337–338
Heating:
coil, 338, 340
cycle, 18
Heating (Cont.):
equipment, 86–87
solar, 360
Helical rotary compressor, 294
Hermetic compressor, 295
High-temperature water, 197–198
Hospital design, 22
Hot-water boiler, 322
Hot-wire anemometer, 236
Hotel and motel design, 20
Humidification, 361–365
AHU system for, 385
equipment, 361–365
psychrometric chart, 363, 480–481
Humidity:
control, 365, 391–392
ratio, 470
sensors, 232–233
HVAC:
cycles, 17–18
psychrometric charts, 483
purposes of, 15–16
specifications, 415–427
Hydraulic diameter/radius, 115
Hydraulic isolator, 204, 206
Ignition, 330
Indirect-fired heating equipment, 337
Individual room AHU, 388–390
Indoor air quality, 143, 501
Indoor design conditions, 31
Induced-draft cooling tower, 301
Induction unit, 381
Inertia base, 499
Infiltration, 61, 67–69, 77
Inlet-vane damper, 103
normalized curve for, 104
Insertion loss, 497
Instability (control system), 227
Instantaneous heat gain, 33
Instrumentation, 265
Insulation:
air duct, 118, 119
pipe, 165, 167
Integral mode, 227
Intensity (of sound), 486
Interactive graphic display, 283
Internal heat gain, 33–35
I/P (current/pneumatic) transducer, 260–261
Irradiation, 503
Isolator, 498
Jet (air distribution in space), 130–131

Laboratory design, 21–22
Ladder diagram, 278–279
Laminar flow, 448
Latent heat:
 of fusion, 7
 of vaporization, 7, 146
Letter report, 444
Life-cycle cost, 82
Lighting systems, 406
Limit switch, 262
Linear plug (valve), 245–246
Lithium bromide, 289
Load:
 calculations, 25 ff
 rough estimate, 26–27
Loop piping system, 169–170
Loudness, 486
Louver, 132
Low-limit temperature switch, 269

Maintenance and operation, 23, 83, 436, 504
Manuals, 436
Manufacturing facilities design, 22–23
Mean temperature difference, 310–311
Mixing box, 272–274, 386
 fan-powered, 387
Mixing two airstreams, 475
Mixing valve, 248
Modes (of control), 225 ff
Modulating controller, 239–242
Modulation, 226
Moist air, 16, 469
Moisture in buildings, 502
Mollier chart, 477
Motel design, 20
Motors:
 controls for, 254 ff
 part winding, 256
 two-speed, 255
 wye-delta (star delta), 256
Multiblade damper, 132, 135
Multizone AHU, 270, 371

Needle valve, 164
Net positive suction head (NPSH), 185
Noise, 483
 control of, 495–500
 criteria curves, 492–493
Office/commercial design, 20
Offset, 227
Oil, lubricating, 293
Oil burners, 330
Open-circuit cooling tower, 301
Open expansion tank, 173
Open-loop control, 225
Operator:
 damper, 250–252
 Opposed-blade damper, 252–253
 flow characteristics, 254
 Orifice plate, 238, 451
Out-and-back piping system, 167–170
Outdoor/outside:
 air, control of, 266, 392–394
 air economy cycle, 266
 design conditions, 31

Package AHU, 85, 382–384
Package chiller, 297
Paddle wheel flow sensor, 239
Panel, radiant, 85–86, 314, 347
Parallel-blade damper, 252–253
 flow characteristics, 253
Performance curve:
 fan, 100–103, 106, 107
 pump, 152–185
Piezometer, 234
Piping system:
 air venting, 178–180
 copper tubing dimensions, 160
 dimensions and weights, steel pipe, 159
 equivalent length of fittings, 165
 expansion and pressurization, 171–178
 friction loss, 164–165
 insulation for, 165, 167
 joining methods, 161
 loop configuration, 169
 materials and fittings, 158, 160
 out-and-back configuration, 167
 reverse return configuration, 167, 169
 sizing methods, 164–165
 sound attenuation, 495–496
 steam flow rate and velocity, 165
 supports, anchors, guides, 161
 valves, 163–164
Pitot tube, 237
Plug lift (in a valve), 245
 versus flow, 247
Plug valve, 245–248
Pneumatic controller, 240 ff
Pneumatic controls, 240 ff
Pneumatic-electric relay, 259
Pneumatic operator, 258
Pneumatic positive positioner, 251
Pneumatic switching relay, 262
Power generation, 407
Preheater:
 combustion air, 195
 feedwater, 194
Pressure:
 control of outside air, 267
differential, 234
 gradient analysis, 125–127
 loss in duct, 111–115
 loss in piping, 164–165
profile, 173–175
 reducing station, 147–148
 reducing valve, 147, 163
relief valve, 163
 sensors for, 234–235
static, 6, 109
 steam, 146–147, 165
total, 109
 vapor, 471, 482
 velocity, 6, 109
Pressure-enthalpy diagram, 290
Pressurization (piping system), 171–178
Primary air system, 381
Problem solving, 1–2
Program timer, 263
Propeller fan, 107
Proportional band, 226
Proportional control, 226–227
Protractor (psychrometric chart), 481
Psychrometrics, 8–9, 469 ff
 adiabatic saturation, 479
 altitude effects, 482–484
 charts, 88–90, 476 ff
 cooling and dehumidifying, 479
draw-through AHU, 370
dry air, 469
evaporative cooling, 479
HVAC processes, 475
 mixing two airstreams, 475
moist air, 469
 properties, 469 ff
 saturated air, 470
sensible cooling, 477
sensible heating, 477
 wet bulb temperature, 470
Pulverized coal burner, 328
Pump, 181 ff
 cavitation, 185
 net positive suction head (NPSH), 185
 parallel operation, 186
 performance curves, 182–184
 power, 6
 selection, 185–186
 series operation, 186
 shut-off head, 184
types, 181
Pushbuttons, 262
Quality (steam), 147, 325
Quick-opening valve, 245
Radial fan, 97–98
Radiant energy transfer:
 cooling, 85–86, 314–315, 347
 heating, 85–86, 345–347
 unit heater, 342–344
Radiation, 345–346
Radiator, 345
 finned pipe, 346
Range and approach, 301
Reciprocating compressor, 292
Recorder, 265
Recovery, heat, 352–359
Reduced-voltage starter, 254, 256
Reflectance, 465
Refrigerant, 318–319
 pumped liquid, 186
Refrigeration cycle, 288 ff
 absorption, 289
 capacity control, 293
 coefficient of performance (COP), 212,
 289, 456
 mechanical, 288
 pressure-enthalpy diagram, 290
 thermoelectric, 287–288
Refrigeration equipment, 86
Register, 129
Regulations and codes, 5, 336, 409
Reheat, 371, 388
Relative humidity, 9, 471
 sensor, 232–233
Relay, 257–260
Report writing, 439
 letter reports, 444
Residential design, 19
Resistance temperature detector (RTD),
 232
Return air fan, 379–380
Reverse return piping system 167–169
Reynolds number, 448
Rheostat, 242
Rod and tube sensor, 229–230
Rooftop AHU, 382
Room criteria curve (sound), 492
Rotary air-to-air heat exchanger, 354
Rotary compressor, 293–294
Rough estimate (of loads), 26–27
Rubber-in shear (vibration isolator), 488
Runaround heat recovery, 352–354

Sail switch, 235
Saturated air, 9
Saturation adiabatic, 479
Schools, design, 21
Scotch marine boiler, 323
Screw compressor, 294
Scroll compressor, 294
Selector relay, 260
Self-contained AHU, 382
Self-contained heat pump, 390
Self-contained valve, 252
Sensible heat factor, 313
Sensor, 229 ff
 flow, 235–239
 humidity, 232–233
 pressure, 234–235
 temperature, 229–232
Set point, 224
Shading coefficient, 46
Shop drawings, 430
Shutter damper, 133
Sick building syndrome, 502
Signal conditioning, 281–282
Single-pole switch, 261
Slide damper, 133
Smoke control, 395
damper, 118
Smoke detector, 270, 395
Software, 283
Sol-air temperature, 37–39
Solar, 360
 heat gain factors, 46, 59–62
 radiation spectrum, 466
Solenoid, 257
Sorbent heat recovery system, 357
Sound (and vibration) (Cont.):
directivity, 488
frequency, 486
intensity, 486
loudness, 486
power, 486
quality, 488
transmission, 488–491
trap, 497
Space limitations, 83
Specific heat, 457
Specific humidity, 73, 367
Specifications, 415 ff
Split system:
 AHU, 84, 383
 heat pump, 390
Splitter damper, 133
Spreader stoker, 328
Spring isolator, 498
Standards and codes, 4, 336, 409
Starter, motor, 254–256
State point (psychrometric chart), 475
Static pressure, 6
Static regain (duct sizing), 123
Steam:
 boiler, 322
 condensate, 148
 flow rate and velocity in piping, 164–165
 humidifiers, 361–365
 pressure reduction, 147
 properties, 146–147
 quality, 147, 325
 superheated, 147, 325
 wet, 147
Stefan-Boltzman constant, 465
Stoker, 328
Stop valve, 163
Storm louver, 132
Stratification, 140–142
Submittal (shop drawings), 430
Swing check valve, 164
Switch, 261–262

Technical report writing, 439
Temperature, 454, 470
effect on design, 92
gradient, 461–462
sensors, 229–232
sol-air, 37–39
Temperature difference (TD) for cooling, 73
Terminal:
 heating equipment, 345
 units, 386 ff
Testing, adjusting and balancing, 433–434
Thermal conduction, 460–462
Thermal convection, 462–464
Thermal efficiency, 326
Thermal liquid boiler, 324
Thermal radiation, 464–466
Thermal storage systems, 207–211
Thermistor, 231
Thermodynamic laws, 454, 455
Thermodynamic properties, 7, 453–454
Thermodynamic wet-bulb temperature, 470
Thermodynamics, 6, 453
Thermoelectric refrigeration, 287–288
Thermosyphon heat recovery, 358–359
Three-duct MZ unit, 371–374
Three-pipe system, 214, 217
Three-way valve, 248–249
Throttling range (proportional band), 226–227
Throw, 131
Time-delay relay, 257
Timer/time clock, 263–264
Training (operator), 23, 435, 504
Transducer, 261
Transmission through building envelope, 37 ff
Transmittance, 465
Trap (sound), 497
Traveling grate stoker, 328
Turbine flow meter, 238
Turbulent flow, 448
Turn-down ratio, 246
Two-phase refrigeration cycle, 288–299
Two-pipe system, 213–216
Two-position control mode, 225
Two-position controller, 240

U factor, 37
 calculation of, 461
Uninterrupted power supply (UPS), 405–406

Unit heater, 342–344
Unit ventilator, 388

Value engineering, 2–4
Valves:
 \(C_v \) (valve coefficient), 249
 control types, 245–249
 manual types, 163–164
 operators, 250–251
 pressure reducing, 147–148, 163
 sizing, 249
 turn-down ratio, 246
Vapor pressure, 471, 482
Variable air volume (VAV), 76, 275, 386–387
Variable speed controller, 255–256, 401–402
Velocity, 448
 pattern (in duct), 463
 pressure, 7, 236
 reduction in (duct sizing), 123
Ventilation (electrical room), 408
Ventilation load, 77–78
Venting, air, 178–180
Venturi, 238, 451
Vibrating stoker, 328
Vibration (see Sound and Vibration)
Viscosity, 448
Volume (specific), 471
 control (fan), 375–381
 Volumetric efficiency, 292

Water hammer, 248
Water:
 high-temperature, 151
 properties of, 149–151
 quantity required for load, 149
 treatment, 332–333
Water-cooled condenser, 299
Water-to-air heat pump, 390
Water-tube boiler, 323–324
Wavelength, 487
Wet-bulb temperature, 470
Wheatstone bridge, 242–243
Wheel, rotary, heat recovery, 352
Windows (see Fenestration)