REFRIGERATION AND AIR CONDITIONING

Second Edition

W. F. Stoecker

Professor of Mechanical Engineering University of Illinois at Urbana-Champaign

J. W. Jones

Associate Professor of Mechanical Engineering University of Texas at Austin

McGRAW-HILL BOOK COMPANY

Auckland Bogotá Guatemala Hamburg Lisbon London Madrid Mexico New Delhi Panama Paris San Juan São Paulo Singapore Sydney Tokyo

CONTENTS

Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling		Preface	xv
1-2 Air Conditioning of Medium-Sized and Large Buildings 1-3 Industrial Air Conditioning 1-4 Residential Air Conditioning 1-5 Air Conditioning of Vehicles 1-6 Food Storage and Distribution 1-7 Food Processing 1-8 Chemical and Process Industries 1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	Chapter 1		1
1-3 Industrial Air Conditioning 1-4 Residential Air Conditioning 1-5 Air Conditioning of Vehicles 1-6 Food Storage and Distribution 1-7 Food Processing 1-8 Chemical and Process Industries 1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-1	Major Uses	1
1-3 Industrial Air Conditioning 1-4 Residential Air Conditioning 1-5 Air Conditioning of Vehicles 1-6 Food Storage and Distribution 1-7 Food Processing 1-8 Chemical and Process Industries 1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-2	Air Conditioning of Medium-Sized and Large Buildings	* 2
1-5 Air Conditioning of Vehicles 1-6 Food Storage and Distribution 1-7 Food Processing 1-8 Chemical and Process Industries 1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-3		3
1-6 Food Storage and Distribution 1-7 Food Processing 1-8 Chemical and Process Industries 1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-4	Residential Air Conditioning	4
1-6 Food Storage and Distribution 1-7 Food Processing 1-8 Chemical and Process Industries 1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-5	Air Conditioning of Vehicles	5
1-7 Food Processing 1-8 Chemical and Process Industries 1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-6		6
1-9 Special Applications of Refrigeration 1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-7		8
1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-8	Chemical and Process Industries	8
1-10 Conclusion References Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-9	Special Applications of Refrigeration	9
Chapter 2 Thermal Principles 2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	1-10		12
2-1 Roots of Refrigeration and Air Conditioning 2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling		References	12
2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	Chapter 2	Thermal Principles	13
2-2 Concepts, Models, and Laws 2-3 Thermodynamic Properties 2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	2-1	Roots of Refrigeration and Air Conditioning	13
2-4 Thermodynamic Processes 2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	2-2	Concepts, Models, and Laws	13
2-5 Conservation of Mass 2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	2-3	Thermodynamic Properties	14
2-6 Steady-Flow Energy Equation 2-7 Heating and Cooling	2-4	Thermodynamic Processes	18
2-7 Heating and Cooling	2-5	Conservation of Mass	19
	2-6	Steady-Flow Energy Equation	20
2-8 Adiabatic Processes	2-7	Heating and Cooling	21
	2-8	Adiabatic Processes	22
2-9 Compression Work	2-9	Compression Work	22

vi CONTENTS

2-10	Isentropic Compression	22
2-11	Bernoulli's Equation	23
2-12	Heat Transfer	24
2-13	Conduction	24
2-14	Radiation	25
2-15	Convection	26
2-16	Thermal Resistance	28
2-17	Cylindrical Cross Section	33
2-18	Heat Exchangers	33
2-19	Heat-Transfer Processes Used by the Human Body	34
2-20	Metabolism '	35
2-21	Convection	36
2-22	Radiation	36
2-23	Evaporation	36
	Problems	37
	References	39
Chapter 3	Psychrometry and Wetted-Surface Heat Transfer	40
3-1	Importance	40
3-2	Psychrometric Chart	40
3-3	Saturation Line	42
3-4	Relative Humidity	42
3-5	Humidity Ratio	43
3-6	Enthalpy	44
3-7	Specific Volume	46
3-8	Combined Heat and Mass Transfer; the Straight-Line Law	47
3-9	Adiabatic Saturation and Thermodynamic Wet-Bulb	
	Temperature	48
3-10	Deviation between Enthalpy and Wet-Bulb Lines	49
3-11	Wet-Bulb Thermometer	50
3-12	Processes	51
3-13	Comment on the Basis of 1 kg of Dry Air	53
	Transfer of Sensible and Latent Heat with a Wetted Surface	53
3-15	•	54
3-16	Insights Provided by Enthalpy Potential Problems	55
	References	56
	Keteretices	58
Chapter 4	Heating- and Cooling-Load Calculations	59
4-1	Introduction	59
4-2	Health and Comfort Criteria	59
4-3	Thermal Comfort	59
4-4	Air Quality	61
4-5	Estimating Heat Loss and Heat Gain	63
· 4-6	Design Conditions	64
4-7	Thermal Transmission	66
4-8	Infiltration and Ventilation Loads	69
4-9	Summary of Procedure for Estimating Heating Loads	70

CO	רזגו	ושי	VΤ	rc	¥71
11.	, i v	LEI	NI		v ı

4-10	Components of the Cooling Load		71
4-11	Internal Loads		71
4-12	Solar Loads through Transparent Surfaces		73
4-13	Solar Loads on Opaque Surfaces		79
4-14	Summary of Procedures for Estimating Cooling Loads		84
,	Problems		85
	References		86
Chapter 5	Air-Conditioning Systems		88
5-1	Thermal Distribution Systems		88
5-2	Classic Single-Zone System		89
5-3	Outdoor-Air Control		90
5-4	Single-Zone-System Design Calculations		92
5-5	Multiple-Zone Systems		95
5-6	Terminal-Reheat System		95
5-7	Dual-Duct or Multizone System		96
5-8	Variable-Air-Volume Systems		97
5-9	Water Systems		100
5-10	Unitary Systems		101
	Problems		101
	References		102
Chapter 6	Fan and Duct Systems		103
6-1	Conveying Air		103
6-2	Pressure Drop in Straight Ducts		103
6-3	Pressure Drop in Rectangular Ducts		106
6-4	Pressure Drop in Fittings		109
6-5	The $V^2\rho/2$ Term		109
6-6	Sudden Enlargement		110
6-7	Sudden Contraction		111
6-8	Turns		113
6-9	Branch Takeoffs		114
6-10	Branch Entries		116
6-11	Design of Duct Systems		117
6-12	Velocity Method		117
6-13	Equal-Friction Method		118
6-14	Optimization of Duct Systems		119
6-15	System Balancing		120
6-16	Centrifugal Fans and Their Characteristics		120
6-17	Fan Laws	•	123
6-18	Air Distribution in Rooms		124
6-19	Circular and Plane Jets		125
6-20	Diffusers and Induction		127
	Problems		127
	References		129
Chapter 7	Pumps and Pumping		130
7-1	Water and Refrigerant Piping		130
7-2	2 2		131

viii CONTENTS

7-3	Water Heaters	132
7-4	Heat Distribution from Hot-Water Systems	133
7-5	High-Temperature Water Systems	134
7-6	Available Pipe and Tubing	135
7-7	Pressure Drop of Water Flowing in Pipes	136
7 - 8	Pressure Drop in Fittings	137
7-9	Refrigerant Piping	137
7-10	Pump Characteristics and Selection	140
7-11	Design of a Water-Distribution System	142
7-12	Sizing the Expansion Tank	144
	Problems	145
	References	146
Chapter 8	Cooling and Dehumidifying Coils	147
8-1	Types of Cooling and Dehumidifying Coils	147
8-2	Terminology	147
8-3	Condition of Air Passing through the Coil (Ideal)	148
8-4	Heat and Mass Transfer	149
8-5	Calculating the Surface Area of a Coil	151
8-6	Moisture Removal	153
8-7	Actual Coil Condition Curves	154
8-8	Solving for Outlet Conditions	155
8-9		155
8-10	_	157
	Problems	158
	References	160
Chapter 9	Air-Conditioning Controls	161
9-1	What Controls Do	161
9-2	Pneumatic, Electric, and Electronic Control	162
9-3	Pneumatic Control Hardware	162
9-4	Direct- and Reverse-Acting Thermostats	163
9-5	Temperature Transmitter with Receiver-Controller	164
9-6	Liquid Valves	165
9-7	Fail-Safe Design	167
9-8	Throttling Range	168
9-9	Dampers	169
9-10	Outdoor-Air Control	170
9-11	Freeze Protection	172
9-12 9-13	Sequencing of Operations	172
9-13 9-14	Other Valves, Switches, and Controls Ruilding Un a Control System	173
9-14 9-15	Building Up a Control System Humidistats and Humidifiers	175
9-15	Master and Submaster Thermostats	176
9-17	Summer-Winter Changeover	177
9-17	Valve Characteristics and Selection	179
9-19	Stability of Air-Temperature Control Loops	180 182
9-20	Temperature Reset Based on Zone Load	183
		100

CONTENTS	ix

9-21	Electric, Electronic, and Computer Control Problems References	184 184 186
Chapter 10	The Vapor-Compression Cycle	187
10-1	Most Important Refrigeration Cycle	187
10-2	Carnot Refrigeration Cycle	187
10-3	Coefficient of Performance	188
10-4	Refrigerant	190
10-5	Conditions for Highest Coefficient of Performance	190
10-6	Temperature Limitations	191
10-7	Carnot Heat Pump	192
10-8	Using Vapor as a Refrigerant	193
10-9	Revisions of the Carnot Cycle	193
10-10	Wet Compression versus Dry Compression	193
10-11	Expansion Process	195
10-12	Standard Vapor-Compression Cycle	195
10-13	Properties of Refrigerants	196
10-14	• • • • • • • • • • • • • • • • • • • •	197
10-15	Heat Exchangers	200
10-16	Actual Vapor-Compression Cycle	202
	Problems	203
	Reference	204
Chapter 11	Compressors	205
11-1	Types of Compressors	205
	Part I: Reciprocating Compressors	205
11-2	Hermetically Sealed Compressors	206
11-3	Condensing Units	207
11-4	Performance	207
11-5	Volumetric Efficiency	207
11-6	Performance of the Ideal Compressor	210
11-7	· · · · · · · · · · · · · · · · · ·	211
11-8	Refrigeration Capacity	213
11-9	Coefficient of Performance and Volume Flow Rate per	
	Kilowatt of Refrigeration	213
11-10	Effect of Condensing Temperature	215
11-11	Performance of Actual Reciprocating Compressors	216
11-12	Actual Volumetric Efficiency	217
11-13	Compression Efficiency	217
11-14	Compressor Discharge Temperatures	218
11-15	Capacity Control	219
	Part II: Rotary Screw Compressors	220
11-16	How the Screw Compressor Functions	220
11-17	Performance Characteristics of Screw Compressors	222
11-18	Capacity Control	222
	Part III: Vane Compressors	222

x CONTENTS

11-19	Vane Compressors	222
	Part IV: Centrifugal Compressors	224
11-20	Role of Centrifugal Compressors	224
11-21	Operation	225
11-22	Flash-Gas Removal	225
	Performance Characteristics	225
11-24	Tip Speed to Develop Pressure	226
11-25	Choice of Impeller and Refrigerant	227
11-26	Surging	228
11-27		229
11-28	How Various Types of Compressors Share the Field	230
	Problems	231
	References	231
Chapter 12	Condensers and Evaporators	233
12-1	Condensers and Evaporators as Heat Exchangers	233
12-2	Overall Heat-Transfer Coefficient	233
12-3	Liquid in Tubes; Heat Transfer and Pressure Drop	236
12-4		238
12-5	Extended Surface; Fins	239
12-6		20,
	Pressure Drop	243
12-7	•	244
12-8	Required Condensing Capacity	244
12-9	Condensing Coefficient	245
12-10	Fouling Factor	247
12-11	Desuperheating	247
12-12	Condenser Design	248
12-13	Wilson Plots	251
12-14	Air and Noncondensables	252
12-15	Evaporators	252
12-16		254
12-17	9	255
12-18	•	256
12-19	•	256
12-20		257
	Problems	257
	References	259
Chapter 13	Expansion Devices	260
13-1	Purpose and Types of Expansion Devices	260
13-2	Capillary Tubes	260
13-3	- · · · · · · · · · · · · · · · · · · ·	263
13-4	Analytical Computation of Pressure Drop in a Capillary Tube	264
13-5	Calculating the Length of an Increment	266
13-6	Choked Flow	268
13-7	Graphical Method of Capillary-Tube Selection	270
13-8	Constant-Pressure Expansion Valve	27

CONTENTS xi

13-9	Float Valves	272
13-10	Superheat-Controlled (Thermostatic) Expansion Valve	273
13-11	Manufacturers' Ratings of Thermostatic Expansion Valves	275
13-12	Electric Expansion Valves	278
13-13	Application	278
	Problems	279
	References	280
Chapter 14	Vapor-Compression-System Analysis	281
14-1	Balance Points and System Simulation	281
1:4-2	Reciprocating Compressor	282
14-3	Condenser Performance	284
14-4	Condensing-Unit Subsystem; Graphic Analysis	284
14-5	Condensing-Unit Subsystem; Mathematical Analysis	286
14-6	Evaporator Performance	288
14-7	Performance of Complete System; Graphic Analysis	289
14-8	Simulation of Complete System; Mathematical Analysis	290
14-9	Some Performance Trends	291
14-10	The Expansion Device	292
14-11	Sensitivity Analysis	293
17-11	Problems	294
	References	295
	Keretenees	293
Chapter 15	Refrigerants	296
15-1	Primary and Secondary Refrigerants	296
15-2	Halocarbon Compounds	296
15-3	Inorganic Compounds	297
15-4	Hydrocarbons	297
15-5	Azeotropes	297
15-6	Thermodynamic Comparison of Some Common Refrigerants	297
15-7	Physical and Chemical Comparison	299
15-8	Thermal Conductivity and Viscosity of Refrigerants	300
15-9	Ozone Depletion	300
15-10	Basis of Choice of Refrigerant	301
15-11	Secondary Refrigerants	301
13-11	Problems	306
	References	307
	Kereletices	307
Chapter 16	Multipressure Systems	308
16-1	Multipressure Systems in Industrial Refrigeration	308
16-2	Removal of Flash Gas	308
16-3	Intercooling	310
16-4	One Evaporator and One Compressor	314
16-5	Two Evaporators and One Compressor	315
16-6	Two Compressors and One Evaporator	317
16-7	Two Compressors and Two Evaporators	319
16-8	Auxiliary Equipment	323
16-9		323

xii CONTENTS

16-10	Liquid-Recirculation Systems	323
16-11	Summary	324
	Problems	325
Chapter 17	Absorption Refrigeration	328
17-1	Relation of the Absorption to the Vapor-Compression Cycle	328
17-2	The Absorption Cycle	329
17-3	Coefficient of Performance of the Ideal Absorption Cycle	330
17-4	Temperature-Pressure-Concentration Properties of LiBr-Water Solutions	331
17-5	Calculation of Mass Flow Rates in the Absorption Cycle	333
17-6	Enthalpy of LiBr Solution	334
17-7	Thermal Analysis of Simple Absorption System	336
17-8	Absorption Cycle with Heat Exchangers	336
17-9	Configuration of Commercial Absorption Units	338
17-10	Crystallization	339
17-11	Capacity Control	341
17-12	Double-Effect System	344
17-13	Steam-Driven Combination with Vapor Compression	344
17-14		347
17-15	Role of the Absorption Unit in Refrigeration Practice	348
2, 20	Problems	349
	References	350
Chapter 18	Heat Pumps	351
18-1	Types of Heat Pumps	35
18-2	Package Type, Reversible Cycle	35
18-3	Heat Sources and Sinks for Package-Type Reversible	55.
10-5	Heat Pumps	353
18 -4	Heating Performance of an Air-Source Heat Pump	354
18-5	Comparative Heating Costs	356
18-6	Matching Heating Capacity to the Heating Load	356
18-7	Sizing the Heat Pump	35
18-8	Decentralized Heat Pump	358
18-9	Double-Bundle Condenser	359
18-10	Industrial Heat Pumps	361
18-11	The Future of the Heat Pump	362
	Problems	363
	References	364
	and the second	
Chapter 19	Cooling Towers and Evaporative Condensers	365
19-1	Heat Rejection to Atmosphere	365
19-2	Cooling Towers	365
19-3	Analysis of Counterflow Cooling Tower	367
19-4	Stepwise Integration	368
19-5	Acceptance Tests	371
19-6	Predicting Outlet Conditions from a Tower	372
19-7	State Points of Air through a Cooling Tower	372

CONTENTS	S Xiii

19-8	Crossflow Cooling Towers	374
19-9	Evaporative Condensers and Coolers	376
19-10	When to Use a Cooling Tower and Evaporative	
	Condenser or Cooler	377
	Problems	378
	References	378
Chapter 20	Solar Energy	380
20-1	Some Fields of Solar Energy	380
20-2	Radiation Intensity: An Overview	381
20-3	Solar Geometry	381
20-4		384
20-5	Glazing Characteristics	385
20-6	Solar Collectors	386
20-7	Thermal Storage	390
20-8	Integration of Solar and Building Systems	392
20-9	Passive Solar Design	395
20-10	Economics of Solar Installations	399
	Problems	399
	References	400
Chapter 21	Acoustics and Noise Control	401
21-1	The Study of Sound and Acoustics	401
21-2	One-Dimensional Sound Waves	402
21-3	Standing Waves	403
21-4	Energy in a Sound Wave	404
21-5	Intensity, Power, and Pressure	404
21-6	Sound Power Level	406
21-7	Intensity Level and Sound Pressure Level	406
21-8	Sound Spectrum	407
21-9	Combination of Sound Sources	407
21-10	Absorptivity	409
21-11	Room Characteristics	411
21-12	Acoustic Design in Buildings	412
21-13	Fan- and Air-Noise Transmission in Ducts	413
21-14	Conclusions	414
	Problems	414
	References	415
	Appendix	416
Table A-1	Water: Properties of Liquid and Saturated Vapor	416
Table A-2	Moist Air 2: Thermodynamic Properties of Saturated Air at	44.0
T-1.1- 4 3	Atmospheric Pressure of 101.325 kPa	418
Table A-3	Ammonia: Properties of Liquid and Saturated Vapor 3	420
Table A-4	Refrigerant 11: Properties of Liquid and Saturated Vapor 4	422
Table A-5	Refrigerant 12: Properties of Liquid and Saturated Vapor 5	424
Table A-6	Refrigerant 22: Properties of Liquid and Saturated Vapor 6	426

xiv CONTENTS

Table A-7	Refrigerant 22: Properties of Superheated Vapor 6	428
Table A-8	Refrigerant 502: Properties of Liquid and Saturated Vapor 7	431
Figure A-1	Pressure-Enthalpy Diagram of Superheated Ammonia Vapor	433
Figure A-2	Pressure-Enthalpy Diagram of Superheated Refrigerant	
	11 Vapor	434
Figure A-3	Pressure-Enthalpy Diagram of Superheated Refrigerant	
	12 Vapor	435
Figure A-4	Pressure-Enthalpy Diagram of Superheated Refrigerant	
	22 Vapor	436
Figure A-5	Pressure-Enthalpy Diagram of Superheated Refrigerant	
	502 Vapor	437
	References	438
	Indexes	439
	Name Index	
	Subject Index	

INDEX

Absorber, 329	Air-source heat pumps, 354-357	
Absorption refrigeration, 328-349	Air-water vapor thermodynamic	
aqua-ammonia system, 347-348	properties, 418-419	
combined with vapor compression, 344	Anechoic room, 412	
double-effect system, 344	Antifreeze, 301-306	
generator in, 329	Aqua-ammonia absorption refrigera-	
lithium-bromide, 331–347	tion system, 347-348	
Acoustic room characteristics, 411-413	Azeotropes, 297	
Acoustics and noise control, 401-415		
Adiabatic process, 22	and the second second	
Adiabatic saturation, 48-49	Baffles, 238	
Air conditioning:	Balance points, 281	
comfort, 2	Balancing air systems, 120	
central, 5	Beer, refrigeration of, 8	
definition of, 1	Bernoulli equation, 23	
industrial, 3-4	Beverages, refrigeration of, 8	
in printing plants, 3	Boilers, 132	
residential, 4-5	Boiling coefficient, 254-256	
of vehicles, 5-6	Branches in air ducts, 114-117	
Air-conditioning controls, 161–184		
Air-conditioning systems, 88-102		
Air-cooled condenser, 234	Capacity controls (see Controls, capacity)	
Air distribution, 124–127	Capillary tubes, 260-271	
Air-duct fittings, pressure drop in,	selection of, 263	
109-117	Carnot heat engine, 187-188	
Air ducts:	Carnot heat pump, 192	
branches in, 114-117	Carnot refrigeration cycle, 187-189	
pressure drop in, 103-109	Central air conditioning, 5	
Air noise, 413	Centrifugal compressors, 224-230	
	420	

440 INDEX

Cheese, refrigeration of, 8	Cooling load, 71-85	
Chemical industry, refrigeration in, 9-10	Cooling-load factor, 72-74, 77, 79	
Chlorofluorocarbons, 296	Cooling-load temperature differences,	
Clean rooms, air conditioning and, 3	80-84	
Coefficient of performance, 188-191,	Cooling towers, performance of, 365-376	
213, 330–331	approach, 366-367	
Coil condition curve, 148-149, 154-155	range, 366-367	
Comfort, thermal, 34-37, 59-61	Cross charge in expansion valve, 277	
Comfort air conditioning, 2	Cryogenics, 1	
Compression:	Crystallization in lithium-bromide-water	
multistage, 310-311	solutions, 339-341	
vapor, 344, 346-347		
Compression efficiency, 217-219		
Compressors, 205–232	Dairy products, refrigeration of, 8	
centrifugal, 224-230	Dampers, 169-171	
reciprocating, 205-220, 282-284	Decentralized heat pumps, 358	
hermetic, 206–207	Density:	
rotary screw, 220–222	of air, 106	
vane, 222-224	definition of, 15	
Computer controls, 184	of water, 136	
Computer rooms, air conditioning for, 4	Desalination, freezing and, 11	
Condensers:	Dew-point temperature, 42	
air-cooled, 234	Diffusers, 127	
double-bundle, 359-361	Double-bundle condenser, 359-361	
evaporative, 376-378	Double-effect absorption refrigeration	
heat-transfer, 194, 233-252, 284-285	system, 344	
water-cooled, 234-239	Dual-duct system, 96	
Condensing coefficient, 245-247	Duct systems:	
Condensing unit, 282-288	design of, 117	
Conduction, 24-25, 29	optimization of, 119-120	
Constant-pressure expansion valves,		
271–272		
Control valves, 165-167	Efficiency:	
Controls:	compression, 217-219	
air-conditioning, 161-184	volumetric, of compressors, 207-210,	
capacity: in absorption systems,	217	
341–343	Elbows, 113-114	
in compressors, 219-220, 222, 229	Electric expansion valves, 278	
computer, 184	Electronic controls, 184	
electronic, 184	Enthalpy:	
pneumatic, 162	of air, 44-45	
Convection, 26-29, 36	definition of, 16	
Convector, 133-134	Enthalpy control, 91	
Coolers, evaporative, 376-378	Enthalpy potential, 54-56, 368	
Cooling coils, 147-159	Entropy, 16	

Equal-friction method, 118-119
Ethylene glycol, 301-306
Eutectic point, 303
Evaporation, 36
Evaporative condensers, 376-378
Evaporative coolers, 376-378
Expansion devices, 195, 260-280, 292
Expansion valves, 271-278
constant-pressure, 271-272
cross charge in, 277
electric, 278
float, 272-273
superheat-controlled, 273-277
thermostatic, 273-277
Extended surface, 239-244

Fail-safe design, 167 Fan(s): noise of, 413 performance of, 120-122 Fan laws, 123-124 Fanno line, 269 Filtration, 62 Fins, 239-242 Flash gas, 225, 308-309 Float expansion valves, 272-273 Food: freezing of, 6 refrigeration of, 7 Food processing, 8 Fouling factor, 247 Four-pipe water systems, 100-101 Freeze drying, 8 Freezestat, 172 Friction factor, 103-105 Frost, 257

Generator in absorption system, 329 Glass: solar loads through, 73-79 transmittance of, 385

Heat, latent, 53-54, 93

Heat exchangers:
liquid-to-suction, 200-202
U-valve, 32, 66, 235
Heat pumps, performance of, 351-363
air-source, 354-357
decentralized, 358
solar-assisted, 353-354
Heat-transfer condenser, 194, 233-252, 284-285
Heating load, 66-71
High-temperature water, 134-135
Humidification, 51, 89, 176-177
Humidistats, 176
Humidity ratio, 43-44

Ice makers, 11
Induction, 127
Industrial air conditioning, 3-4
Industrial refrigeration, 1
Infiltration, 69-70
Information-flow diagram, 287
Intercooling, 310-311

Hydronic systems, 130

Jet of air, 125-127

Latent heat, 53-54, 93
Lights, loads from, 71-73
Liquid recirculation, 323-324
Liquid-to-suction heat exchangers, 200-202
Lithium-bromide absorption refrigeration, 331-347
crystallization in, 339-341
Load-ratio line, 92

Mass transfer, 54, 149–150, 153–154 Metabolism rate, 35 Multistage compression, 310–311 Multizone system, 96

Newton-Raphson technique, 150

Noise, air, 413 Saturated air, 42 Noise control, acoustics and, 401-415 Sensitivity analysis, 293 Noncondensables, 252 Shading angles, 77-79 Nusselt number, 27, 236-238 Shading coefficient, 76 Sol-air temperature, 80 Solar altitude, 78, 383 Optimization of duct systems, 119-120 Solar-assisted heat pumps, 353-354 Solar azimuth, 78, 385 Solar collectors, 386-390 Perfect gas, 18 Solar cooling load, 73-84 Pipe: through glass, 73-79 refrigerant, 137-140 Solar energy, 380-400 sizes of, 135-136 passive, 395-399 Pneumatic controls, 162 Solar geometry, 381–382 Power plants, 4 Solar positions, 78 Prandtl number, 27, 236-237 Solar radiation, 381 Pressure, definition of, 14 Sonic velocity, 402 Pressure drop: Sound, study of, 401-402 in air-duct fittings, 109-117 Sound intensity, 404-405 in air ducts, 103-109 Sound power, 404-407 Sound pressure, 404-405 in water-pipe fittings, 137 in water pipes, 136-138 Sound reverberation, 412 Prime area, 242 Sound sources, combination of, 407-409 Sound spectrum, 407 Printing plants, air conditioning in, 3 Psychrometry, 40-58 Sound waves: Pumps, 140-142 energy in, 404 (See also Heat pumps) one-dimensional, 402 standing, 403-404 Specific heat, 15 Specific volume, 15, 46-47 Radiation, 24-26, 29, 36, 381 Reciprocating compressors (see Compres-Spot cooling and heating, 3 sors, reciprocating) Stefan-Boltzmann law, 28 Refrigerant, 190, 196-197, 296-306 Storage, thermal, 390-392 Refrigerant piping, 137-140 Straight-line law, 47-48, 374 Refrigeration: Successive substitution, 286-288 absorption (see Absorption Superheat-controlled expansion valves, refrigeration) 273-277 industrial, 1 System simulation, 281 Relative humidity, 42-43 Residential air conditioning, 4-5 Resistance, thermal, 66 Temperature: Reverberant room, 412 definition of, 14 Reversing valves, 351-352 and design heating and cooling, 64-66

Reynolds number, 27, 104, 137, 236 Rotary screw compressors, 220–222 Temperature reset, 183-184

Temperature transmitter, 164-165

Terminal reheat system, 95
Textiles and air conditioning, 3
Thermal comfort, 34-37, 59-61
Thermal resistance, 66
Thermal storage, 390-392
Thermostatic expansion valves, 273-277
Thermostats, 163-164, 177-179
Throttling range, 168-169
Trombe wall, 398
Tube sizes, 135-136
Two-pipe water systems, 100

U-valve heat exchangers, 32, 66, 235 Unitary systems, 101

Valves:

control, 165-167
expansion (see Expansion valves)
reversing, 351-352
Vane compressors, 222-224
Vapor compression combined with
absorption, 344, 346-347
Vapor-compression-system analysis,
281-295
Vapor-compression thermodynamics,
187-204
standard cycle, 195, 197-200

Variable-volume air system, 97-99
Vehicles, air conditioning of, 5-6
Velocity method, 117
Ventilation, 3, 61-63, 69, 90, 170-171
Viscosity:
of air, 106
of ethylene glycol-water solutions,
304
of refrigerants, 300
of water, 136
Volumetric efficiency, 207-210, 217

Water:

high-temperature, 134–135
thermodynamic properties of, 416–417
viscosity of, 136
Water-cooled condenser, 234–239
Water-distribution systems, 130, 142–144
Water-heaters, 132
Water-pipe fittings, pressure drop in,
137
Water pipes, pressure drop in, 136–138
Water systems, 100–101
four-pipe, 100–101
two-pipe, 100
Wilson plot, 251
Wine, refrigeration of, 8