Introduction to Magnetism and Magnetic Materials

Second edition

David Jiles
Ames Laboratory,
US Department of Energy

Department of Materials Science and Engineering and
Department of Electrical and Computer Engineering,
Iowa State University,
Ames, Iowa, USA
Contents

Preface to the first edition .. v
Preface to the second edition x
Foreword .. xi
Acknowledgements .. xvii
Glossary of symbols .. xxiii
SI units, symbols and dimensions xxix
Values of selected physical constants xxxi

Part 1 Electromagnetism – magnetic phenomena on the macroscopic scale

1 Magnetic fields ... 3
 1.1 The magnetic field .. 3
 1.2 Magnetic induction ... 9
 1.3 Magnetic field calculations 18
 References ... 32
 Further reading .. 33
 Exercises ... 33

2 Magnetization and magnetic moment 35
 2.1 Magnetic moment .. 35
 2.2 Magnetic poles and Ampèrian bound currents 40
 2.3 Magnetization .. 44
 2.4 Magnetic circuits and demagnetizing field 48
 2.5 Penetration of alternating magnetic fields into materials ...
 References ... 57
 Further reading .. 61
 Exercises ... 61

3 Magnetic measurements .. 65
 3.1 Induction methods .. 65
 3.2 Force methods .. 71
 3.3 Methods depending on changes in material properties ...
 3.4 SQUIDS ... 83
Contents

References
- References 86
- Further reading 86
- Exercises 86

4 Magnetic materials
- 4.1 Classification of magnetic materials 89
- 4.2 Magnetic properties of ferromagnets 91
- 4.3 Different types of ferromagnetic materials for applications 96
- 4.4 Paramagnetism and diamagnetism 103
 - References 108
 - Further reading 109
 - Exercises 109

5 Magnetic properties
- 5.1 Hysteresis and related properties 111
- 5.2 The Barkhausen effect and related phenomena 119
- 5.3 Magnetostriction 121
- 5.4 Magneto resistanc e 128
 - References 129
 - Further reading 130
 - Exercises 130

Part 2 Magnetism in materials – magnetic phenomena on the microscopic scale

6 Magnetic domains
- 6.1 Development of domain theory 135
- 6.2 Energy considerations and domain patterns 146
 - References 153
 - Further reading 154
 - Exercises 154

7 Domain walls
- 7.1 Properties of domain boundaries 157
- 7.2 Domain-wall motion 168
 - References 175
 - Further reading 176
 - Exercises 176

8 Domain processes
- 8.1 Reversible and irreversible domain processes 179
- 8.2 Determination of magnetization curves from pinning models 189
- 8.3 Theory of ferromagnetic hysteresis 198
- 8.4 Dynamics of domain magnetization processes 205
References 212
Further reading 214
Exercises 215

9 Magnetic order and critical phenomena 217
9.1 Theories of paramagnetism and diamagnetism 217
9.2 Theories of ordered magnetism 228
9.3 Magnetic structure 239
References 258
Further reading 260
Exercises 260

10 Electronic magnetic moments 263
10.1 Classical model of magnetic moments of electrons 263
10.2 Quantum mechanical model of magnetic moments of electrons 266
10.3 Magnetic properties of free atoms 280
References 288
Further reading 289
Exercises 289

11 Quantum theory of magnetism 291
11.1 Electron–electron interactions 291
11.2 The localized electron theory 301
11.3 The itinerant electron theory 309
References 319
Further reading 320
Exercises 320

Part 3 Magnetics – technological applications 323

12 Soft magnetic materials 325
12.1 Properties and applications 325
12.2 Materials for a.c. applications 329
12.3 Materials for d.c. applications 350
12.4 Materials for magnetic shielding 356
References 359
Further reading 360

13 Hard magnetic materials 363
13.1 Properties and applications 363
13.2 Permanent magnet materials 376
References 391
Further reading 393
xvi Contents

14 Magnetic recording 395
 14.1 Magnetic recording media 395
 14.2 Recording heads and the recording process 409
 14.3 Modeling the magnetic recording process 419
 References 420
 Further reading 421

15 Magnetic evaluation of materials 423
 15.1 Methods for evaluation of intrinsic properties 423
 15.2 Methods for detection of flaws and other inhomogeneities 433
 15.3 Magnetic imaging methods 447
 15.4 Conclusions 453
 References 455
 Further reading 457

Solutions 459

Appendix 1: The magnetic field as a relativistic correction to the electric field 511

Appendix 2: Derivation of Maxwell’s equation from the relativistic Lorentz transformation 515

Author index 521

Subject index 529
Subject Index

a.c. applications, materials for, 329
a.c. bias recording, 418
a.c. losses in transformers, 326
adiabatic demagnetization of paramagnets, 107
alignment of magnetic moments, 140
alnico, 377
alternating fields, penetration into materials, 57
alternating gradient force magnetometer, 74
aluminum–iron alloys, 335
amorphous magnetic fibers, 346
amorphous metals, 98, 339
Ampère’s circuital law, 7
Ampère’s hypothesis, 136
Amperian current model, 40
Amperian currents and poles, 40
analytical balance, 72
angular momentum of electrons, 265, 267, 268, 269
wave mechanical corrections to, 271
anisoteric magnetization, 115
measurement of, 116
anisotropic materials, 125
anisotropy, 114, 150
constants, 152
cubic, 152
and domain rotation, 150, 370
energy of domain wall, 158
hexagonal, 151
antiferromagnetism, 168, 234
antiparallel spin alignment, 234
artificially structured materials, 348
atomic force microscopy, 145
atomic magnetic moment, 90, 135, 281
atomic orbital angular momentum, 282
atomic spin angular momentum, 283
atomic total angular momentum, 284

band theory of ferromagnetism, 311
band theory of magnetism, 309
band theory of paramagnetism, 310
Barkhausen effect, 119, 141, 197, 424
for detection of stress, 424
for evaluation of microstructure, 425
theory, 120, 197
bending of domain walls, 173
Bethe–Slater curve, 299
Biot–Savart law, 4
Bitter patterns, 142
Bloch walls, 157
bound currents and poles, 40
boundary element technique, 29
Brillouin function, 303
ceramic magnets, 103
chromium dioxide, 404
tapes, 100
circuits, 368
classical eddy current power dissipation, 60, 327
classical theory of diamagnetism, 218
classical theory of ferromagnetism, 228
classical theory of paramagnetism, 223
closure domains, 166
cobalt–chromium recording media, 400
cobalt–chromium recording tapes, 404
cobalt–iron alloys, 354
cobalt–platinum, 382
cobalt–samarium, 384
cobalt surface-modified gamma iron oxide, 403
coe grometer, 428, 431
coe gercivity 95, 113, 325, 365
colossal magneto resistance, 413
com posite magnetic ma terials, 348
com putational ma netics, 31
co re losses, 98
correlation effects among electron spins, 316
Cot ton-Mouton effect, 80
critical behaviour at the ordering temperature, 252
critical ma gnetic field
under strong pinning, 187
under weak pinning, 188
cubic aniso tropy, 152
Curie temperature, 95
and the mean field interaction, 233
and thermal energy, 159
Curie-Weiss law, 224, 259, 306
Curie’s law, 105, 222, 304
Current loop dipole, 15
d.c. applications of soft mag netic materials, 350
data storage densities, 395
predicted, 398
definition of ampere per meter, 5
demagnetization curve, of permanent magnet, 368
demagnetizing factors, 50
demagnetizing field, effect on measurements, 51
demagnetizing fields, 48, 50
density of magnetic recording, 417
diamagnetism, theory of, 217
diamagnets, 89, 103, 107
susceptibility of, 89
dipole, as a current loop, 15
dipole, model for leakage field calculation, 441
dipole moment, 38
discontinuous magnetization, 119, 197
disks, magnetic recording, 395
dissipation, anomalous or excess, 328
dissipation, classical eddy current, 327
domain
patterns and energy minimization, 146
processes, reversible and irreversible, 179
rotation, 149, 152, 179
and anisotropy, 150
wall motion, 149, 168, 424
domain dynamics, damping, 211
domain dynamics, relaxation effects, 211
domain magnetization, 152
domain magnetization dynamics, 205
domain walls
anisotropy and exchange energies, 163
Bloch walls, 157
bowing, 173
defect interactions, 191
effects of stress on, 166
effects of weak fields on, 169
energy, 158
energy balance in, 169
forces on, 169
motion, 207
and the Barkhausen effect, 197, 424
and magnetoacoustic emission, 426
and magnetostriction, 198
Neel walls, 167
non-180°, 166
180°, 166
pinning
by inclusions, 184
by strains, 181
strong pinning, 187
weak pinning, 188
planar displacement of walls, 170
surface energy, 161, 169
thickness, 157, 162
domains, 135
and the magnetizing process, 148
nucleation, 148
observation of, 141, 143
single, 146
Weiss domain theory, 137
eddy current dissipation, 327
eddy current inspection methods
applications of, 446
for magnetic materials, 445
Subject Index 531

eddy currents, 59
effect of demagnetizing field, 51
elastic constant anomalies at critical
temperatures, 254
electric motors, 329
electrical losses, 98
 in transformers, 326
electromagnetic field equations, 16
electromagnetic induction, 13
electromagnetic relays, 99
electromagnets, 97, 327
electron band theory of magnetism, 309
electron–electron interactions, 291
electron microscopy
 SEM, 145
 TEM, 144
electron spin, 270
 and exchange energy, 295
 resonance, 101
electron states, occupancy according to
 Hund’s rules, 284
electronic energy levels, splitting by
 magnetic field, 277
electronic magnetic moment, quantum
 theory of, 266
electronic magnetic moments, 263
electronic orbital magnetic moment, 263
electronic spin magnetic moment, 264
electronic total magnetic moment, 265
energy loss through wall pinning, 198
energy minimization and domain
 structure, 146
energy product, 139, 366
 typical values for permanent magnets,
 101
energy states of magnetic moment
 configurations, 140
equivalent current model, 15
exchange coupling in insulators, 308
exchange, direct, 297
exchange energy, 158
 dependence on interatomic spacing, 299
 and electron spin, 295
 between electrons in filled shells, 299
 values for various solids, 298
exchange, indirect, 317
exchange integral, 293
exchange interaction, 294, 295
 hydrogen molecule model, 293
 oxygen molecule model, 296
sinusoidal, 239
exchange, RKKY type, 318
exchange spring magnets, 387
exchange stiffness, 160
exchange, superexchange, 308
excited states and spin waves, 251
Faraday effect, 80, 143
Faraday’s law of induction, 13, 65
fatigue, effects of, on magnetic properties,
 425
ferrimagnetism, 236
ferrites, 102, 103, 349, 381
 hard, 103, 381
 soft, 102, 349
ferrofluids, 142
ferromagnetic resonance, 208
ferromagnetism, 228
ferromagnets, 89, 91, 136
 applications of, 96
ferroprobes (fluxgates), 429
fibers, magnetic, 346
field due to Amperian currents, 42, 43
field due to poles, 41, 42, 43
field lines, 50
finite element methods, 31
finite element techniques, 29
flaw detection using magnetic methods, 434
flux
 coil
 moving, 66
 stationary, 66
 leakage, 435
 application of flux leakage method to
 NDE, 435
 lines, 49
 quantization, 83
 rate of change of, 65
fluxgate magnetometer, 70
fluxgates (ferroprobes), 429
fluxmeter, 66
flying height for recording heads, 401
force between moving charges, 4
force on a current loop, 39
force on a dipole, 39
force on current-carrying conductor in a field H, 12
free atoms, 280
Fröhlich–Kennelly equation, 115
gamma iron oxide, 100, 399, 403
generators, 329
giant magnetoresistance, 318
Globus–Guyot model, 196
Hall coefficient, 78
Hall effect, 76
magnetometers, 76
hard disks, structure, 401
hard magnetic materials, 96, 363
Heisenberg model of ferromagnetism, 297
Heitler–London approximation, 293
Heitler–London model, 293
helimagnetism, 238
Helmholz coils, 22
Heusler alloys, 300
hexagonal anisotropy, 151
hexagonal ferrites, 405
high-frequency applications, 349
Hubbard model, 316
Hund’s rules, 284
hysteresis, 93, 111
coefficients and magnetic properties, 201
effects of microstructure and deformation on, 204
loss, 113
macroscopic mean field theory of, 198
parameters, 112
stress dependence of, 428
hysteresisgraphs, 66
inclusion theory of domain-wall pinning, 184
inductance cores, 102
induction coil methods, 65
initial permeability, 113
initial susceptibility
 in the planar wall approximation, 173
 in the wall bending approximation, 174
intensity of magnetization, 44
interatomic spacing, effect on exchange energy, 299
iron and low-carbon steels, 350
iron oxide, 403
iron–aluminum alloys, 335
iron–cobalt alloys, 354
iron–neodymium–boron, 384
iron–nickel alloys, 337, 352
iron–silicon alloys, 330
irreversible magnetization changes, 199
Ising model, 192, 255
isolated single domains, 152
itinerant and local moment models, 316
itinerant electron model, 309
criticism of, 315
itinerant electron theory, 309
itinerant exchange, 311
J-J coupling, 286
Kerr effect, 80, 143
Kundt’s constant, 80
Landau–Lifshitz–Gilbert model, 206
Langevin function, 107
Langevin theory
 of diamagnetism, 218
 of paramagnetism, 223
Langevin–Weiss theory, critique of, 227
laser magneto-optic microscope, 144
law of approach to saturation, 118
leakage fields, 434
calculation and modelling of, 441
finite element calculation of, 443
Lenz’s law of induction, 13
local pinning fields, 207
localized atomic moments, 301
localized electron model, criticism of, 308
localized electron theory, 301
localized theory of electronic magnetic moments, 301
Lorentz microscopy, 144
magnet assemblies, 370
magnetic circuits, 48, 54, 368
magnetic dipole, 14
magnetic fibers, 346
<table>
<thead>
<tr>
<th>Magnetic Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>of circular coil, 20</td>
</tr>
<tr>
<td>definition, 3, 5</td>
</tr>
<tr>
<td>generation, 3</td>
</tr>
<tr>
<td>due to long conductor, 5</td>
</tr>
<tr>
<td>of long thin solenoid, 18</td>
</tr>
<tr>
<td>in magnetic materials, 57</td>
</tr>
<tr>
<td>numerical methods for calculation of, 29</td>
</tr>
<tr>
<td>patterns around conductor, 4</td>
</tr>
<tr>
<td>of a short thick solenoid, 25</td>
</tr>
<tr>
<td>of short thin solenoid, 24</td>
</tr>
<tr>
<td>of two coaxial coils, 22</td>
</tr>
<tr>
<td>magnetic field computation, 31</td>
</tr>
<tr>
<td>magnetic field, definition of unit, 5</td>
</tr>
<tr>
<td>magnetic field as a relativistic effect, 4</td>
</tr>
<tr>
<td>magnetic fields, sizes in various situations, 10</td>
</tr>
<tr>
<td>magnetic flux, energy associated with, 10</td>
</tr>
<tr>
<td>magnetic flux leakage, 439</td>
</tr>
<tr>
<td>applications of, 441</td>
</tr>
<tr>
<td>instruments for automation of, 442</td>
</tr>
<tr>
<td>models for, 441</td>
</tr>
<tr>
<td>magnetic force microscopy, 74, 145, 448</td>
</tr>
<tr>
<td>tip/specimen interactions, 450</td>
</tr>
<tr>
<td>magnetic hysteresis, 428</td>
</tr>
<tr>
<td>applications in NDE, 429</td>
</tr>
<tr>
<td>magnetic imaging, 447</td>
</tr>
<tr>
<td>magnetic induction, 9</td>
</tr>
<tr>
<td>definition of tesla, 11</td>
</tr>
<tr>
<td>lines of, 12</td>
</tr>
<tr>
<td>magnetic moment, 35, 135, 263</td>
</tr>
<tr>
<td>of closed shell of electrons, 280</td>
</tr>
<tr>
<td>of electron, 263</td>
</tr>
<tr>
<td>due to orbital angular momentum, 263</td>
</tr>
<tr>
<td>due to spin angular momentum, 264</td>
</tr>
<tr>
<td>total, 265</td>
</tr>
<tr>
<td>magnetic order, 136, 247</td>
</tr>
<tr>
<td>magnetic particle inspection, 434</td>
</tr>
<tr>
<td>applications of, 435</td>
</tr>
<tr>
<td>‘dry’ method, 435</td>
</tr>
<tr>
<td>fluorescent particles, 435</td>
</tr>
<tr>
<td>optimum conditions for, 437</td>
</tr>
<tr>
<td>‘wet’ method, 435</td>
</tr>
<tr>
<td>magnetic pole model, 14</td>
</tr>
<tr>
<td>magnetic properties</td>
</tr>
<tr>
<td>of free atoms, 280</td>
</tr>
<tr>
<td>microscopic, typical values of, 165</td>
</tr>
<tr>
<td>magnetic quantum numbers, 268</td>
</tr>
<tr>
<td>magnetic recording</td>
</tr>
<tr>
<td>history, 396</td>
</tr>
<tr>
<td>materials, 99</td>
</tr>
<tr>
<td>media, 395</td>
</tr>
<tr>
<td>materials for, 403</td>
</tr>
<tr>
<td>tapes, 397</td>
</tr>
<tr>
<td>magnetic resonance, 208</td>
</tr>
<tr>
<td>magnetic shielding, 356</td>
</tr>
<tr>
<td>magnetic storage densities, 395</td>
</tr>
<tr>
<td>magnetic structure, 239, 247</td>
</tr>
<tr>
<td>magnetic tapes, 397</td>
</tr>
<tr>
<td>magnetic units, 15</td>
</tr>
<tr>
<td>magnetite (lodestone), 376</td>
</tr>
<tr>
<td>magnetization, 44</td>
</tr>
<tr>
<td>in materials with few defects, 195</td>
</tr>
<tr>
<td>microstructural effects, 189</td>
</tr>
<tr>
<td>relation to B and H, 45</td>
</tr>
<tr>
<td>relation to magnetic moment, 15</td>
</tr>
<tr>
<td>saturation, 46, 93</td>
</tr>
<tr>
<td>strain effects, 189</td>
</tr>
<tr>
<td>technical saturation, 124, 148</td>
</tr>
<tr>
<td>magneto-acoustic emission, 121, 426</td>
</tr>
<tr>
<td>stress dependence of, 427</td>
</tr>
<tr>
<td>magnetographic method of leakage flux detection, 434</td>
</tr>
<tr>
<td>magnetomechanical effect, 428</td>
</tr>
<tr>
<td>magnetometers, 65</td>
</tr>
<tr>
<td>magnetomotive force, 79</td>
</tr>
<tr>
<td>magneto-optic disk drives, 407</td>
</tr>
<tr>
<td>magneto-optic recording devices, 406</td>
</tr>
<tr>
<td>magnetoresistance, 128</td>
</tr>
<tr>
<td>colossal, 413</td>
</tr>
<tr>
<td>giant, 318</td>
</tr>
<tr>
<td>magnetoresistive multilayers, 413</td>
</tr>
<tr>
<td>magnetoresistors, 79</td>
</tr>
<tr>
<td>magnetostatic energy, 146</td>
</tr>
<tr>
<td>magnetostriiction, 121</td>
</tr>
<tr>
<td>at an angle θ to the magnetic field, 124</td>
</tr>
<tr>
<td>field induced, 126</td>
</tr>
<tr>
<td>forced, 124</td>
</tr>
<tr>
<td>polycrystalline, 126</td>
</tr>
<tr>
<td>saturation, 123</td>
</tr>
<tr>
<td>single-crystal magnetostriction constant, cubic, 125</td>
</tr>
</tbody>
</table>
Subject Index

spontaneous, 122
in terms of single crystal
magnetostriction constants, 125
transverse, 127
magnetostrictive devices, 79
magnetostrictive materials, 128
market for hard disk drives, 397
market for permanent magnets, 364
maximum energy product, 101
Maxwell’s equations, 16
mean field, 137, 230
metallic glasses, 339
metglas, 340
micromagnetic modeling, 211
modelling of magnetization curves based
on pinning, 189
molecular field, 137
moment of inertia, 264
motors, 329
moving coil, 66
galvanometer, 67
multilayers, 128, 318
mumetal, 337
nanocomposite permanent magnets, 387
nanocrystalline materials, 347
nanostructured permanent magnets, 386, 387
NDE, magnetic methods for, 423
nearest neighbour interactions, 232
Neel temperature, 235, 236
Neel walls, 167
neodymium–iron–boron, 100, 384, 391
neutron diffraction, 240
antiferromagnetic scattering, 244
Bragg diffraction peaks, 241
elastic scattering, 241
ferromagnetic scattering, 243
inelastic scattering, 245
magnetic diffraction peaks, 242
paramagnetic scattering, 242
topography, 143
nickel–iron alloys, 337, 352
ninety degree (90°) domain-wall motion, 427
nitrogenation of permanent magnets, 389
non-integral atomic magnetic moments, 312
numerical methods for calculation of
magnetic fields, 29
orbital magnetic moment
of atom, 281
of electron, 263
orbital momentum quantum number, 267
orbital wave functions, two electron
system, Heitler–London model, 293
order in rare earth solids, 247
ordered magnetism, theories of, 228
ordering temperature, 95, 252
oxygen molecule model for exchange, 296
paramagnetism, 221
classical (Langevin) theory, 223
classical (Weiss) theory, 225
of ‘free’ electrons, Pauli theory, 310
theory of, 217, 223, 225
paramagnets, 89, 104
applications of, 106
field dependence of susceptibility, 105
properties of, 104
susceptibility of, 89
temperature dependence of
susceptibility, 105
Paschen–Back effect, 288
Pauli paramagnetism, 310
penetration depth, 58
permalloy, 337, 352
permanent magnet steels, 376
permanent magnets, 100
applications, 375
materials, 376
properties, 363
comparison, 390
stability, 376
permeability, 11, 46, 92, 136
demagnetizing corrections, 53
differential, 46, 95
initial, 113
relative, 47
permeance coefficient, 369
permendur, 354
perpendicular recording media, 100, 406
pinning of domain walls
critical field, 187, 188
by inclusions, 184
by strains, 181
pinning models, 189
platinum–cobalt, 382
pole model, 14, 40
pole strength, 14, 37
poles and Amperian currents, 40
poles and bound currents, 40
potential approximation for domain-wall
motion, 170
power dissipation due to classical eddy
currents, 60
Preisach model, 419
use in magnetic recording industry, 420
principal quantum number, 267
proton precession magnetometers, 72
quantization
of angular momentum, 269
of electron spin, 276
quantum mechanical exchange
interaction, 294
quantum number
l, 267
m_l, 268
m_s, 268
n, 267
s, 267
quantum theory of
electron–electron interactions, 291
electronic magnetic moments, 266
ferromagnetism, 306
paramagnetism, 302
quenching of orbital angular momentum,
286
Rayleigh’s law, 117
recording density, 417
recording devices, 395
recording heads, 409
flying height, 401
inductive, 410, 411
magnetoelastic, 410, 413
recording materials, 99
recording media, 99
magnetic properties comparison, 403
recording process, 409
reading, 418
writing, 413, 415
recording track density, 402
relative permeability, 47
relays, 99, 328
reluctance, 54
remanence, 94, 113, 365, 432
remanence enhanced magnets, 387
residual field, 432
resistance magnetometers, 79
resonance, magnetic, 208
resonance magnetometers, 81
retentivity, 92
reversible magnetization changes, 200
rigid band model of ferromagnetism
(Slater–Pauling), 314
rigid domain-wall motion, 170
initial susceptibility of, 172
RKKY exchange coupling, 318
rotating coil, 67
Russell–Saunders coupling, 285
samarium–cobalt, 100, 382
samarium–iron-nitride, 383, 389
saturable coil magnetometers, 70
saturation, law of approach to, 117
saturation magnetization, 46, 93, 365
technical, 124, 148
scanning SQUID microscopy, 452
search coil, 66
shielding, magnetic, 356
shielding, multiple, 358
shielding factor, 358
silicon–iron alloys, 330
skin depth, 58
Slater–Pauling curve, 314
soft ferrites, 349
soft iron, 350
soft magnetic materials, 96, 325
a.c. losses, 326
coercivity, 325
hysteresis loss, 326
permeability, 325
saturation magnetization, 326
solenoid
general formula for field of, 27
magnetic field
of a long thin, 18
of a short thick, 25
of a short thin, 24
optimization of geometry, 26
power considerations, 26
specific heat anomalies at critical
temperatures, 254
spin magnetic moment, 264
of atom, 283
spin quantum number, 267
spin waves, 251
spontaneous magnetization, 307
temperature dependence of, 307
stability of permanent magnets, 376
steel, production, 423
Stern–Gerlach experiment, 278
Stoner–Slater (electron band) theory of
ferromagnetism, 311
Stoner–Wohlfarth model, 370, 420
stored energy density, 366
strain theory of domain-wall pinning, 181
Street and Woolley model, 211
stress, effects of, on bulk magnetization, 204
stress dependent magnetization, 428
strong magnetic fields, effect on electron
coupling, 288
supermalloy, 337
susceptibility, 46, 136
anomalies at critical temperatures, 254
balance, 72
demagnetizing corrections, 53
differential, 46
tapes, magnetic recording, 397
technical saturation magnetization, 46, 148
temperature dependent paramagnetic
susceptibility (Curie), 105, 304
temperature independent paramagnetic
susceptibility (Pauli), 310
theories of magnetic ordering, 228
thermal expansion anomalies at critical
temperature, 254
thin-film magnetometers, 80
thin film recording tapes, 404
three-d (3d) band electrons, magnetic
properties, 313
time dependent magnetic fields, 17
torque, 14
magnetometer, 72
torsion balance, 72
total atomic orbital angular momentum,
284
track density, 402
transformers, 98, 329
transverse magnetostriction, 127
ultrasonic velocity, field dependence in
steels, 433
units in magnetism, 15
vector model of the atom, 281
Verdet’s constant, 80
vibrating coil, 68
magnetometer, 68
vibrating-sample magnetometer, 68
wall bowing approximation, 173
wave equation for electromagnetic fields,
18
wave function of two-electron system, 291
including spin, 294
wave mechanical corrections to angular
momentum of electrons, 271
Weiss domain theory, 137
Weiss mean field theory, 137
consequences of, 227
critique of, 227
of ferromagnetism, 228
of paramagnetism, 225
wires, magnetic, 346
X-ray topography, 145
Zeeman effect
anomalous, 277
normal, 273