Contents

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>INTRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Production Systems 19</td>
</tr>
<tr>
<td>1.2</td>
<td>Automation in Production Systems 25</td>
</tr>
<tr>
<td>1.3</td>
<td>Manual Labor in Production Systems 29</td>
</tr>
<tr>
<td>1.4</td>
<td>Automation Principles and Strategies 31</td>
</tr>
<tr>
<td>1.5</td>
<td>Organization of this Book 36</td>
</tr>
</tbody>
</table>

PART I: OVERVIEW OF MANUFACTURING 39

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>MANUFACTURING OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Manufacturing Industries and Products 43</td>
</tr>
<tr>
<td>2.2</td>
<td>Manufacturing Operations 46</td>
</tr>
<tr>
<td>2.3</td>
<td>Production Facilities 50</td>
</tr>
<tr>
<td>2.4</td>
<td>Product/Production Relationships 55</td>
</tr>
<tr>
<td>2.5</td>
<td>Lean Production 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>MANUFACTURING MODELS AND METRICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Mathematical Models of Production Performance 65</td>
</tr>
<tr>
<td>3.2</td>
<td>Manufacturing Costs 73</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>Averaging Procedures for Production Models 82</td>
</tr>
</tbody>
</table>

PART II: AUTOMATION AND CONTROL TECHNOLOGIES 85

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>INTRODUCTION TO AUTOMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Basic Elements of an Automated System 87</td>
</tr>
<tr>
<td>4.2</td>
<td>Advanced Automation Functions 95</td>
</tr>
<tr>
<td>4.3</td>
<td>Levels of Automation 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>INDUSTRIAL CONTROL SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Process Industries Versus Discrete Manufacturing Industries 105</td>
</tr>
<tr>
<td>5.2</td>
<td>Continuous Versus Discrete Control 107</td>
</tr>
<tr>
<td>5.3</td>
<td>Computer Process Control 113</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>HARDWARE COMPONENTS FOR AUTOMATION AND PROCESS CONTROL</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>6.1 Sensors</td>
<td>131</td>
</tr>
<tr>
<td>6.2 Actuators</td>
<td>135</td>
</tr>
<tr>
<td>6.3 Analog-to-Digital Converters</td>
<td>144</td>
</tr>
<tr>
<td>6.4 Digital-to-Analog Converters</td>
<td>147</td>
</tr>
<tr>
<td>6.5 Input/Output Devices for Discrete Data</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>NUMERICAL CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Fundamentals of NC Technology</td>
<td>158</td>
</tr>
<tr>
<td>7.2 Computer Numerical Control</td>
<td>164</td>
</tr>
<tr>
<td>7.3 Distributed Numerical Control</td>
<td>169</td>
</tr>
<tr>
<td>7.4 Applications of NC</td>
<td>172</td>
</tr>
<tr>
<td>7.5 Engineering Analysis of NC Positioning Systems</td>
<td>179</td>
</tr>
<tr>
<td>7.6 NC Part Programming</td>
<td>187</td>
</tr>
<tr>
<td>Appendix A 7: Coding for Manual Part Programming</td>
<td>205</td>
</tr>
<tr>
<td>Appendix B 7: Part Programming with Apt</td>
<td>213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>INDUSTRIAL ROBOTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Robot Anatomy and Related Attributes</td>
<td>231</td>
</tr>
<tr>
<td>8.2 Robot Control Systems</td>
<td>237</td>
</tr>
<tr>
<td>8.3 End Effectors</td>
<td>239</td>
</tr>
<tr>
<td>8.4 Sensors in Robotics</td>
<td>240</td>
</tr>
<tr>
<td>8.5 Industrial Robot Applications</td>
<td>241</td>
</tr>
<tr>
<td>8.6 Robot Programming</td>
<td>249</td>
</tr>
<tr>
<td>8.7 Robot Accuracy and Repeatability</td>
<td>257</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>DISCRETE CONTROL USING PROGRAMMABLE LOGIC CONTROLLERS AND PERSONAL COMPUTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Discrete Process Control</td>
<td>266</td>
</tr>
<tr>
<td>9.2 Ladder Logic Diagrams</td>
<td>274</td>
</tr>
<tr>
<td>9.3 Programmable Logic Controllers</td>
<td>278</td>
</tr>
<tr>
<td>9.4 Personal Computers Using Soft Logic</td>
<td>285</td>
</tr>
</tbody>
</table>

PART III: MATERIAL HANDLING AND IDENTIFICATION TECHNOLOGIES

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>MATERIAL TRANSPORT SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction to Material Handling</td>
<td>290</td>
</tr>
<tr>
<td>10.2 Material Transport Equipment</td>
<td>295</td>
</tr>
<tr>
<td>10.3 Analysis of Material Transport Systems</td>
<td>312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>STORAGE SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Storage System Performance and Location Strategies</td>
<td>330</td>
</tr>
<tr>
<td>11.2 Conventional Storage Methods and Equipment</td>
<td>334</td>
</tr>
</tbody>
</table>
11.3 Automated Storage Systems 337
11.4 Engineering Analysis of Storage Systems 345

Chapter 12 AUTOMATIC IDENTIFICATION AND DATA CAPTURE 358
12.1 Overview of Automatic Identification Methods 359
12.2 Bar Code Technology 362
12.3 Radio Frequency Identification 370
12.4 Other AIDC Technologies 372

PART IV: MANUFACTURING SYSTEMS 375

Chapter 13 INTRODUCTION TO MANUFACTURING SYSTEMS 375
13.1 Components of a Manufacturing System 377
13.2 A Classification Scheme for Manufacturing Systems 382
13.3 Overview of the Classification Scheme 389

Chapter 14 SINGLE-STATION MANUFACTURING CELLS 394
14.1 Single-Station Manned Cells 395
14.2 Single-Station Automated Cells 396
14.3 Applications of Single-Station Cells 401
14.4 Analysis of Single-Station Systems 406

Chapter 15 MANUAL ASSEMBLY LINES 417
15.1 Fundamentals of Manual Assembly Lines 419
15.2 Analysis of Single Model Assembly Lines 426
15.3 Line Balancing Algorithms 433
15.4 Mixed Model Assembly Lines 438
15.5 Workstation Considerations 450
15.6 Other Considerations in Assembly Line Design 451
15.7 Alternative Assembly Systems 454

Chapter 16 AUTOMATED PRODUCTION LINES 464
16.1 Fundamentals of Automated Production Lines 465
16.2 Applications of Automated Production Lines 474
16.3 Analysis of Transfer Lines 478

Chapter 17 AUTOMATED ASSEMBLY SYSTEMS 497
17.1 Fundamentals of Automated Assembly Systems 498
17.2 Quantitative Analysis of Assembly Systems 504

Chapter 18 CELLULAR MANUFACTURING 523
18.1 Part Families 525
18.2 Parts Classification and Coding 528
18.3 Production Flow Analysis 532
Contents

23.3 CAM, CAD/CAM, and CIM 724
23.4 Quality Function Deployment 728

Chapter 24 PROCESS PLANNING AND CONCURRENT ENGINEERING 735
24.1 Process Planning 736
24.2 Computer-Aided Process Planning 742
24.3 Concurrent Engineering and Design for Manufacturing 744
24.4 Advanced Manufacturing Planning 748

Chapter 25 PRODUCTION PLANNING AND CONTROL SYSTEMS 753
25.1 Aggregate Production Planning and the Master Production Schedule 756
25.2 Material Requirements Planning 757
25.3 Capacity Planning 763
25.4 Shop Floor Control 765
25.5 Inventory Control 771
25.6 Extensions of MRP 778

Chapter 26 JUST-IN-TIME AND LEAN PRODUCTION 785
26.1 Lean Production and Waste in Manufacturing 786
26.2 Just-in-Time Production Systems 790
26.3 Autonomation 797
26.4 Worker Involvement 801

Index 812
Index

A
Aberrations, 98
Absolute positioning, incremental positioning vs., 163
AC motors, 139–141
induction, 140
step motors/stepping motors, 140–141
synchronous, 140
Accelerometer, 133
Acceptable quality level (AQL), 652
Acceptance number, 651
Acceptance sampling, 651
Accessibility, 331
Accuracy:
inspection, 648–649
measuring instruments, 675–676
in robots, 257–258
defined, 259
Acquisition distance, 304
Active sensors, 132
Actual work, 788
Actuators, 90, 135–144
classification of, 135
defined, 135
eelectric motors, 135, 136–141
hydraulic, 135, 142–144
pneumatic, 135, 142–144
solenoids, 141–142
Adaptive control, 110–111
decision function, 111
identification function, 110–111
modification function, 111
Adaptive control machining, 111
Addressable points, 184, 257
Adhesive bonding, 41, 49
Adhesive devices, 239
Advanced manufacturing planning, 748–751
facilities planning, 750
investment project management, 750
manufacturing research and development, 750–751
technology evaluation, 749–750
Aggregate production planning, 754, 756
AGVS, See Automated guided vehicle system (AGVS)
American National Standards Institute (ANSI), 636
American Society for Quality (ASQ), 636–637
American system of manufacture, 42
Ammeter, 133
Amplifier, 135, 145
Analog:
defined, 106
measuring device, 131
Analog versus digital instruments, 677
Analog-to-digital converters, 144–147
resolution of, 146
Andon board, 802–803
Anodizing, 49
APT, See Automatically programmed tool system (APT)
Arc welding, 244–245
Arc-on time, 245
Armature, DC motor, 137
AS/RS, See Automated storage/retrieval system (AS/RS)
Assembly, 46
and industrial robots, 247–248
process planning for, 739–740
Assembly by worker teams, 455
Assembly line, 42, 378
Assembly operations, 46, 49
Assignable variations, 606, 632
Asynchronous conveyors, 308–309
Asynchronous transport systems, 423
Attributes sampling plan, 651
AutoCAD, 195
Automated assembly:
defined, 497
technology, 498
Automated assembly systems, 376, 456, 497–522
applications, 503–504
capital expense, 498
fundamentals of, 498–504
multi-station assembly machines, 505–510
partial automation, 511–515
practical guidelines from equations, 515–516
quantitative analysis of, 504–516
single-station assembly machines, 510–512
subsystems, 498
system configurations, 498–500
carousel assembly system, 499–500
dial-type machine, 499
in-line assembly machine, 498–499
single-station assembly machine, 500
workstations, parts delivery at, 500–503
quantitative analysis of, 504–505
Automated drafting, 720
Automated guided vehicle system (AGVS), 298–304, 455
applications, 299–300
assembly line applications, 299–300
defined, 298
determining number of vehicles in, 315–316
driverless trains, 298–299
flexible manufacturing systems, 300
storage and distribution operations, 299
unit load carriers, 299
vehicle guidance technology, 300–302
vehicle management and safety, 303–303
vehicle safety, 304
vehicles, types of, 298–299
Automated inspection, 655–657
Automated integrated production, 35
Automated manufacturing systems, 25–26
Automated process planning, 528
Automated production, 34
Automated production lines, 464–496
applications of, 474–478
machining operations, 475–476
system design, 476–478
capital investment required by, 465
cycles, 466
defined, 465
fundamentals of, 465–474
line controllers, 474
requirements for application of, 465
storage buffers, 472–473
system configurations, 466–468
rotary configuration, 467–468
segmented in-line configuration, 466–467
transfer lines, analysis of, 478–480
workpart transfer system, 468–472
linear transfer systems, 469–470
rotary indexing mechanisms, 471–472
Automated stations, 389–390
Automated storage/retrieval system (AS/RS), 291, 337–343
applications of, 340–342
automated item retrieval system, 340
components and operating features of, 342–343
deep-lane AS/RS, 339–340
defined, 337
man-on-board AS/RS, 340
miniload AS/RS, 340
rack structure sizing, 345–347
throughput, 347–350
types of, 338–339
unit load AS/RS, 338–339
work-in-process (WIP) storage, 340–342
Automated systems, 22
basic elements of, 87–95
power required for, 88–90
Automated transfer line, 376
Automated turning operation (example), 91
Automatic dimensioning, 719
Automatic identification and data capture (AIDC), 358–374
automatic identification methods, 359
bar codes, 370
defined, 358
first read rate (FRR), 361
machine vision, 373
magnetic stripes, 372
optical character recognition (OCR), 372–373
radio frequency identification technology (RFID), 370–372
radio frequency methods, 360
substitution error rate (SER), 361
technologies, 360–361
reasons for using, 360–361
Automatic identification and data collection (AIDC) technologies, 770
Automatic identification systems, compatibility of automated storage systems with, 341
Automatic pallet changer (APC), 399, 404
Automatic tool-changer (ATC), 404
Automatic workpart positioner, 404
Automatically programmed tool system (APT), 87, 157–158
contouring motion commands, 221–225
geometry statements, 213–219
circles, 217–218
lines, 215–217
planes, 217
points, 214–215
round rules, 218–219
motion commands, 220–225
contouring motions, 221–225
point-to-point commands, 220–221
part programming with, 213–221
examples, 211–212
Automation, 19, 42, 95–203
advanced functions, 95–100
common measuring devices used in, 132
defined, 85
error detection and recovery, 97–100
fixed, 26
historical note, 86–87
levels of, 100–102
maintenance and repair
diagnostics, 97–98
migration strategy, 34–35
power for, 89–90
principles and strategies, 31–36
in production systems, 25–28
programmable, 26–27
reasons to justify automation, 28
safety monitoring, 95–96
Automation systems
development, 751
Automobile body checking
software, 692
Autonomation, 797–801
defined, 797
eroof prevention, 799–800
jidoka, 798
poka-yoke devices, 799–800
total productive maintenance
(TPM), 800–801
Auxiliary activities, 61
Auxiliary statements, 226–227
Auxiliary work, 788
Availability, 69–71, 313, 331–332, 800
and workstation requirements, 407, 409–410
Average outgoing quality curve
(AOQ curve), 653–654
Average outgoing quality limit
(AOQL), 653
Average workload, FMS
workstations, 578
Axis, 231

B
Back lighting, 701
Backtracking move, parts, 537
Balance delay, 432
Bar codes, 360, 362–370
bar code printers, 366–367
bar code readers, 362, 364–365
contact bar code readers, 364
height-modulated, 362
linear (one-dimensional), 363–368
moving beam bar code scanners, 366
noncontact bar code readers, 364
optical, 770
stacked, 369
standard, adoption of, 363
symbol, 363–364
two-dimensional (2-D), 368–370
Universal Product Code
(UPC), 363
width-modulated, 362
Basic data analysis, Six Sigma,
628–630
Basic process, 737
Batch, 46
defined, 44
Batch and job shop production, 65–66
Batch model assembly lines, 425–426
Batch production, 44–45, 53–54
Belt conveyors, 306
Bending, 48
Bill of materials (BOM) file, 759
Bimetallic switch, 133
Bimetallic thermometer, 133
Binary, defined, 107
Binary sensors, 132
Binary vision system, 700
Binary-coded decimal (BCD)
system, 187
Bins, 336
Biometric technologies, 360
Boole, George, 268
Boolean algebra, 268–269
laws/theorems of, 271
NOT function, 269
OR function, 269
push-button switch (example),
271–272
robotic machine loading
(example), 271
Boring machine, 41
Bottleneck model, 577–586
terminology/symbols, 577–578
FMS operational parameters,
578–579
operation frequency, 578
part mix, 577
process routing, 578
system performance measures,
579–586
transport time, 578
work handling system, 578
workstations/servers, 577
Bottleneck station, 66
Bottom-driven unit, 344
Boulton, Matthew, 86
Brainstorming, 629
Brazing, 49
Bridge crane, 311
Bronze Age, 41
Brushless DC motor, 136
Buffer storage in zone, 341
Bulk storage, 334
Burbridge, J., 532
Burden rate, 75
Business functions, 23
Bypassing move, parts, 537

C
CAD, See Computer-aided
design (CAD)
CAD/CAM (computer-aided design
and computer-aided manufacturing), 714, 726
CAD/CAM system, defined, 192
computer-automated part
programming, 193–195
gometry definition programming, 192–193
Mastercam, 194
part programming using, 192–195
tool path generation using, 193
Calibration, of measuring devices,
134–135
Cam, 86
CAM, See Computer-aided
manufacturing (CAM)
Cam:
cam checking software, 692
drive mechanisms, 472
Cameras, 700–701
CAN-Q, 577
Cantilever racks, 336
Capacity planning, 34, 754, 763–795
capacity adjustments, 764–765
capacity requirements planning
(CRP), 764
defined, 764
rough-cut capacity planning
(RCCP), 764
Capcek, Karel, 230
Capital goods, 46
Capital recovery factor, 77
CAPP, See Computer-aided process
planning (CAPP)
Cardamatic milling machine, 156
Carousel assembly systems, 499–500
Carousel storage systems, 343–345,
350–352
applications, 344–356
horizontal system, 344
storage capacity, 351
technology, 344
throughput analysis, 351–352
vertical system, 344
Carrying costs, 771
Cartesian coordinate robot, body­
and-arm assembly, 233–234
Cart-on-track conveyors, 307–309
Casting, 41, 48
power form, 89
Cause-and-effect diagrams, 620
Cell (system) level, of automation, 101
Cellular layout, 53–54
Cellular manufacturing, 52, 392, 523–553
arranging machines in a GT cell, 544–546
composite part concept, 535–536
defined, 524, 534
group technology (GT), 523–524
Hollier method, 545–546
machine cell design, 536–539
objectives in, 534–535
part families, 523–527
parts classification and coding systems, 528–532
performance measures for machine sequences in a GT cell (example), 545–546
production flow analysis (PFA), 532–534
quantitative analysis in, 541–546
rank order clustering, grouping parts/machines by, 541–543
Central computer control, 303
Central processing unit (CPU), 280, 722
Centralized terminal, 770
Chain conveyors, 306, 343
Chain-type structure, 529
Check sheets, 618
Chemical vapor deposition, 49
China, 18–19
Chip card, 370
CIM, See Computer-integrated manufacturing (CIM)
CLDATA, 192
Cleaning, 48
CLFILE, 192
Closed loop control systems, 93–94
compared to an open loop system, 94–95
Closed-loop positioning systems, 179–190, 182–184
CMMs, See Coordinate measuring machines (CMMs)
CNC, See Computer numerical control (CNC)
CNC machining centers, 403–406
machining centers, 403–404
classifications of, 404
defined, 403
numerical control, 404
CNC Software, Inc., 195
Coating, 48–49
Code, 359
Coils, ladder logic diagrams, 274
Combination logic control, 113, 267
Combined operations, 33
Comment cards, 730
Common use items, 760
Commutation, 136
Complaint studies, 730
Composite parts, 535–536
Computerized machinability data systems, 724
Computer control system, 381–382
flexible manufacturing systems (FMSs), 567–570
diagnostics, 570
performance monitoring and reporting, 570
shuttle control, 569
tool control, 569–570
tool life monitoring, 570
tool location, 569–570
workpiece monitoring, 569
workstation control, 567–568
Computer integrated manufacturing (CIM), 19
Computer numerical control (CNC), 158, 159, 164–169
application software, 168
defined, 164
features of, 164–166
machine control unit for, 166–168
central processing unit (CPU), 166
I/O interface, 167
machine tool axes, controls for, 167
memory, 166–167
personal computers (PCs) and, 168
sequence controls, 168
spindle speed, controls for, 167
machine interface software, 168
operating system software, 168
software, 168–169
Computer process control, 113–128
computer control, capabilities of, 116–117
computer process monitoring, 120–121
control requirements, 115–116
direct digital control (DDC), 121–123
distributed control system (DCS), 124–125
enterprise-wide integration of factory data, 127–128
exception handling, 119
forms of, 120–128
historical note, 114
interlocks, 117
interrupt system, 117–119
numerical control and robotics, 123
personal computers (PCs), 125–126
polling (data sampling), 116–117
programmable logic controllers (PLCs), 123
supervisory control, 123–124
Computer process monitoring, 120–121
Computer vision, See Machine vision
Computer-aided design (CAD), 27, 713
automated drafting, 720
defined, 716
design evaluation and review, 719–720
design workstations, 721–722
digital computer, 722–723
engineering analysis, 718–719
geometric modeling, 717–718
plotters, 723
printers, 723
and product design, 715–720
storage devices, 723
system hardware, 721–723
systems, 30
Computer-aided engineering (CAE), 718
Computer-aided line balancing, 725
Computer-aided manufacturing (CAM), 27, 724–725, 742
generative CAPP systems, 744
manufacturing control, 715
manufacturing planning, 714–715
retrieval CAPP system, 742–743

Computer-aided process planning (CAPP), 195, 724–725, 742–743

Computer-aided design and computer-aided manufacturing. See CAD/CAM (computer-aided design and computer-aided manufacturing)

Computer-assisted NC part programming, 724

Computer-assisted part programming, 189–192
arithmetic module, 192
CLDATA, 192
CLFILE, 192
computer tasks, 191–192
input translation module, 191–192
part programmer’s job, 189–191
postprocessing, 192

Computer-automated part programming, 193–195

Computer-integrated manufacturing (CIM), 27–28, 34, 713–714, 726–728

Computerized manufacturing support systems, 27–28

Computers, 86
Concurrent engineering, 714, 744–745
components of, 745

Conditional scanning, 117
Configurations, industrial robots, 233–236

Congestion, 445–446
Consumer goods, 46
Consumer’s risk, 652
Contact bar code readers, 364
Contact input interface, 150
Contact output interface, 150
Contacts, ladder logic diagrams, 274

Continuous control:
comparing to discrete control, 107
defined, 107
Continuous control systems, 108–112
adaptive control, 110–111
feedforward control, 109
on-line search strategies, 111–112

other specialized techniques, 112
regulatory control, 108–109
steady-state optimization, 109–110
Continuous improvement, 61
Continuous loop conveyors, 309
analysis of, 319–320
Continuous motion conveyors, 308
Continuous path systems, 161
Continuous production, 44
Continuous transport system, 422–423
Continuous variable, 106–107
Contouring, 161
Contract manufacturing, 18
Control, See also Quality
control (QC)
adaptive, 110–111
central computer, 303
combinational logic, 113, 267
computer control system, 381–382
computer numerical control (CNC), 158, 159, 164–169
cursor, 722
direct, 126
direct digital control (DDC), 121–123
direct numerical control (DNC), 158, 169–172
discrete, 107, 113
feedforward, 109
industrial, 104
inventory, 24, 725, 755, 771–778
logic, 266–273
machine control unit (MCU), 159, 166–168
manufacturing, 24
motion, 160–164
numerical control (NC), 123, 155–228
plant operations, 34
priority, 767
process, 34, 725
regulatory, 108–109
sequential, 113
set point, 114
shop floor control (SFC), 24, 121, 725, 755, 765–771
statistical process control (SPC), 24, 610–621
supervisory, 123–124
zone, 302–303
Control charts, 610–616
for attributes, 613–615
defined, 610
as feedback loop, 616
interpreting, 615–616
types of, 611
for variables, 611–613

Control program, CNC operating system software, 168
Control resolution, 184–186, 257–258
Control system, 85, 93–95
Controller unit, 89–90

Conventional measuring and gauging techniques, 680–681
Conventional storage methods, 291
Conversational programming, 195–196
Conversion time, 145
Conveyor analysis, 317–321
continuous loop conveyors, 319–320
recirculating conveyor, 320–321
single direction conveyor, 318–319
Conveyors, 305–310
asynchronous, 308–309
belt, 306
cart-on-track, 307–310
chain, 306
continuous loop, 309
continuous motion, 308
defined, 305
in-floor towline, 307
nonpowered, 305
operations and features, 308–309
overhead trolley, 307
powered, 305
powered, 305
recirculating, 309
roller, 305
screw, 307
single direction, 309
skate-wheel, 305
vertical lift, 107–108
vibration-based, 107–108

Coordinate measuring machines (CMMs), 679, 681–695
applications and benefits, 692–694
components, 682
construction, 683–686
controls, 687
DCC programming, 687–688
defined, 682
mechanical structure, 685–686
cantilever, 685–686
column, 686
fixed bridge, 686
gantry, 686
horizontal arm, 686
moving bridge, 686
off-line programming, 687–688
operation and programming, 687–688
portable, 695
probes, 683–685
on machine tools, 694–695
software, 688
application-specific software, 691–692
core software, 688–691
post-inspection software, 691
reverse engineering software, 691
Coordinate metrology, 681–682
Coordination and control, 50
Corporate overhead, 74
Corporate overhead rate, 75
Cost estimating, 725
Counters, 273–274
Cranes, 310–311
Critical ratio, 767
Cursor control, 722
Customer returns, 730
Cutoff length, 696–697
Cutter offset, 209
Cutting conditions, 172
Cycle time, 65, 804–809
Cylindrical configuration, robot body-and-arm assembly, 233–234

D
DAC, See Digital-to-analog converter (DAC)
Data acquisition and information processing, 90
Data decoder, 359
Data encoder, 359
Data Matrix, 373
Data Matrix ECC200, 370
DC motors, 136–139
DCC programming, 687–688
DCSs, See Direct numerical control (DNC)
DDC, See Direct digital control (DDC)
Dead reckoning, 301–302
Dedicated FMS, 561
Defect concentration diagrams, 618–619
Defect rate:
defined, 409
in a sequence of operations, compounding effect of, 662
in serial production, effect of, 661–663
and workstation requirements, 407, 409–410
Defective parts production, 801
Defective units per million (DUPM), 627–628
Defects per million (DPM), 627
Defects per million opportunities (DPMO), 627
Deformation processes, 48
Degree-of-freedom (d.o.f.) of motion, 231
Delay-off timer, 273
Delay-on timer, 273
Depalletizers, 291
Depalletizing, and industrial robots, 243
Dependent demand, 757
Design for life cycle, 748
Design for manufacturing and assembly (DFM/A), 746–748
design principles and guidelines, 746–747
organizational changes in, 746
Design for product cost (DFC), 748
Design for quality (DFQ), 748
Design retrieval, 528
Design workstations, 721–722
Device level, of automation, 100–101
Devol, George C., 86, 230, 231
DFM/A, See Design for manufacturing and assembly (DFM/A)
Dial indexing machine, 467
Dial-type machine, 499
Die casting, and industrial robots, 243
Digital transducers, 132
Digital-to-analog converter (DAC), 147–149
conversion steps, 147
data holding, 147
decoding, 147
first-order hold, 148–149
zero-order hold, 147–149
Direct control, 126
Direct digital control (DDC), 121–123
system, 114
system components, 122
Direct labor, 382
Direct labor cost, 74, 77
Direct numerical control (DNC), 158, 169–172
behind the tape reader (BTR), 169
defined, 169
local area networks (LANs), 171–172
switching network, configuring, 171
system configuration, 169–170
Direct thermal printing, and bar codes, 367
Direct transport, 381
Discrete control:
compared to continuous control, 107
defined, 107
use of, 113
Discrete control systems, 112–113
Discrete data:
contact input interface, 150
contact output interface, 150
input/output devices for, 150–151
pulse counters, 151
pulse generator, 151
Discrete manufacturing industries:
levels of automation in, 105–106
process industries vs., 105–107
variables and parameters in, 105–106
Discrete process control systems, 266–274
logic control, 267–273
sequencing, 273–274
Discrete sensor devices, 132
Discrete variable, 107
Discrete-event simulation, 719–720
Distributed control systems (DCSs), 123, 124–141
Distributed inspection, 660–661, 664–666
Distributed numerical control (DNC) systems, 570
defined, 170
Division of labor, 418–419
DNC, See Direct numerical control (DNC)
Down counter, 274
Downstream allowance, 424
Drawer storage, 336
Drawing, 48
Drift, 678
Drilling, 41, 48
and industrial robots, 247
Drive-through racks, 336
Dual command cycles, 331
Dual grippers, 239–240
Dyeing, 40
Dynamometer, 133

Earliest due date, 767
Economic order quantity formula, 771–774
Edge detection, 703
Editor, CNC operating system software, 168
Electric discharge machining (EDM), 89
Electric drive systems, and robot joints, 236
Electrical actuators, 135
Electrical actuators (electric motors), 136–141
AC motors, 139–141
DC motors, 136–139
Electrical actuators (electrical field inspection techniques), 707
Electrical power, and automated/nonautomated processes, 88
Electrification, 42, 70
Electromagnetic technologies, 360
Electromechanical relay, 142
Electronic gages, 681
Electronic Product Code (EPC) standard, 370
Electroplating, 49
Electrostatic plotters, 723
Emergency maintenance, 800
Employee time sheets, 769
End effector, 233, 239–240
grappers, 239–240
tools, 240
Engelberger, Joseph, 230–231
Engineering project work, 31
Engineering workstation, 723
Enterprise level, of automation, 101
Enterprise resource planning (ERP), 127, 714, 728, 755, 779–781
Enterprise-wide integration of factory data, 127–128
Equipment maintenance, 31
Equipment usage cost, 77–79
ERP, See Enterprise resource planning (ERP)
Error checking, 719
Error detection and recovery, 97–100
in an automated machining cell (example), 98–99
error recovery, defined, 99
Error prevention, 62
Error recovery:
in an automated machining cell (example), 99–100
test, 537
Escapement device, 501–502
European Article Numbering system (EAN), 364
Event-driven change, 112, 115
Exception handling, 119
Exception reports, 768
Exciter, 140
Executive program, CNC operating system software, 168
Expansion fits, 49
Expert system, defined, 744
Extended bottleneck model, 586–590
equations/guidelines for, 588
External interrupts, 118
External logistics, 290
External noise factors, 632
External sensors, 240–241
Extrusion, 48

Facilities, 19–22
automated systems, 22
manual work systems, 19–20
worker-machine systems, 21–22
Facilities planning, 750
Factory data collection (FDC) systems, 768–771
automated and semi-automated data collection systems, 770–771
manual (clerical) data input techniques, 769–770
purposes of, 768
Factory operations, manual labor in, 29–30
Factory overhead, 74
Factory overhead rate, 75
Factory system, 41
Failure diagnostics, 97
Faro gage, 695
Feature extraction, 703
Feature weighting, 703
Feed track, 500–501
Feedback control system, 93–94
Feedback process control, 656–657
Feedforward control, 109
Field intelligence, 730
Final inspection, 660–661, 663–664
distributed inspection vs. (example), 664–665
Fingernail test, 698
Finishing operations, 738
Finite element analysis (FEA), 719
Finite element modeling (FEM), 719
Firing, 40
First-come-first served priority, 767
First-order hold, 148–149
Fitter, 245
FiveSS system, 803–804
Fixed automation, 26
Fixed beam bar code readers, 365
Fixed costs, 73
Fixed routing, 379
Fixed-position layout, 52–53
Fixed-rate launching, 445–450
for three or more models, 447–450
for two models, 445–447
Flanders, R., 524
Flexibility, increased, 33
Flexible assembly systems, 388
Flexible automated manufacturing system, use of term, 556
Flexible automated systems, 27
Flexible machining system, use of term, 556
Flexible manufacturing, 19
Flexible manufacturing cell (FMC), 392, 559
Flexible manufacturing systems (FMSs), 86, 300, 376, 388, 392, 537, 554–600
Allen-Bradley Co. assembly FMS (example), 572–573
applications, 571–573
benefits, 573–574
components of, 561–571
computer control system, 567–570
dedicated, 561
defined, 556–561
diagnostics, 570
Index

flexibility, 557–558
level of, 560–561
flexible fabricating system (example), 572
historical note, 555
human resources, 570–571
material handling and storage system, 564–566
number of machines, 558–560
operational issues, 576
performance monitoring and reporting, 570
performance reports, 570
planning and design issues, 558–559
quantitative analysis of, 576–592
bottleneck model, 577–586
extended bottleneck model, 586–590
FMS sizing problem, 590–592
random-order, 561
shuttle control, 569
stations, 559
tool control, 569–570
tool life monitoring, 570
tool location, 569–570
types of, 558–561
Vought Aerospace FMS (example), 571–572
workpiece monitoring, 569
workstation control, 567–568
workstations, 562–564
assembly, 563–564
load/unload stations, 562–563
machining stations, 563
sheet-metal fabrication, 563
Flexible transfer line, 561
Flip-flops, 151
Float transducer, 133
Flow line production, 54
Flow rate, 277
Flow-through racks, 336
Fluid flow sensor, 133
Fluid flow switch, 133
Fluid-powered rotary motors, 144
FMC, See Flexible manufacturing cell (FMC)
FMS, See Flexible manufacturing systems (FMSs)
Focus groups, 730
Focused factories, 59
Ford, Henry, 42, 420
Ford Motor Company, 85, 86, 777
Forge welding, 41
Forging, 48
and industrial robots, 243–244
power form, 89
Forklift trucks, 297
Form code, 530
Formal machine cells, 540
Formal surveys, 730
Forming, 40, 48
Forrester, Jay, 156
FORTRAN, 87
Forward sensing, 302
Fraction defect rate, 801
Frame buffer, 700
Free transfer line, 466
Frequency select method, 301
From/To charts, 312, 545
From/To ratio, 544–545
Front lighting, 701
Fully automated machine, 22, 377
Function block diagrams (FBDs), 283
Fusion welding, 41

G
Gages, 680–681
Gaging, 680–681
Gantry crane, 311
Gear, 86
Gear checking software, 692
Generative CAPP systems, 744
Geneva mechanism, 471–472
Geometric modeling, 717–718
Germany, 18
Globalization, 18
Grafcet method, 283
Gravity feed tracks, 501
Grayscale vision systems, 700
Grinding, 40, 48
and industrial robots, 247
Group technology (GT), 38, 523–524, See also Machine cells
applications, 539–541
manufacturing, 540
product design, 540–541
benefits of, 525
biggest obstacle in changing over to, 527
defined, 523
historical note, 524
part families, 523–527
defined, 525
identifying, 524
GT, See Group technology (GT)

H
Hand tools, 20–21
Hand trucks, 295–296
Hard disk, 87
Hard product variety, 52
Hard real-time control system, 286
Harder, Del, 86
Harris-Intertype (Langston Division), 524, 527
Heat treating:
and industrial robots, 244
power form, 89
Heat treatment, 41
Height-modulated bar code, 362
Hierarchical structure, 529
High production, 51, 54–55
High reliability, 677
High-energy laser beams, 705
High-level and low-level scanning, 116–117
Histograms, 617
Hoists, 310–311
Holding cost rate, 772
Holding costs, 771
Honeywell, 115
TDC 2000, 141
Hopper, 500
Horizontal machining center (HMC), 404
Human mistakes, 98
Human resources, manufacturing systems, 382
Humans and machines, relative strengths and attributes of, 22
Hydraulic actuators, 135, 142–144
Hydraulic drive systems, and robot joints, 236

I
Identification and tracking systems, 291
Idle time, 445–446
Illumination, 701–702
In statistical control, use of term, 606
Incremental positioning, absolute positioning vs., 162–163
Independent demand, 757
Index of performance, 108
Indexing machine, 467
Industrial control, 104
Industrial control systems, 104–129
continuous vs. discrete control, 107–113
Index

Industrial Revolution, 41
Industrial robots, 86, 114, 229–265, See also Robot accuracy and repeatability; Root programming
applications, 241–248
assembly and inspection, 247–248
body-and-arm configurations, 233
commercial/technological qualities, 230
configurations, 233–236
defined, 229
distal effector, 233, 239–240
human-like characteristics, 229–230
joint drive systems, 236–237
joint notation system, 235
joints, 230, 231–233
actuation of, 236
links, 231–233
manipulator, 231
material handling applications, 242–244
processing operations, 244–247
arc welding, 244–245
spot welding, 244
spray coating, 245–246
robot anatomy/attributes, 231–237
robot control systems, 237–238
intelligent control, 238
limited sequence control, 237
point-to-point control, playback with, 237–238
sensors, 240–241
short history of, 230–231
work volume, 235
wrist configurations, 234–235
Industrial towing tractors, 298
In-floor towline conveyors, 307
Ingersoll-Rand Company, 555
Injection molding, power form, 89
Ink-jet printers, 723
and bar codes, 367
In-line assembly machine, 498–499
In-line layout, 565
Input interlock, 117
Input scan, 281
Inputs, ladder logic diagrams, 274–275
In-sequence move, parts, 537
Insertion operations, and industrial robots, 242
Inspection, 645–673, See also Coordinate measuring machines (CMMs)
100% manual, 653–655
accuracy, 648–650
for attributes, 646–647
automated, 655–657
contact inspection techniques, 679–680
c conventional measuring and gauging techniques, 680–681
coordinate measuring machines (CMMs), 681–695
defect rate in serial production, effect of, 661–663
distributed, 660–661, 664–666
distributed vs. final, 660–661
final, 660–661, 663–664
fundamentals, 646–651
and industrial robots, 247–248
machine vision, 698–704
and machine vision, 703–704
manual, 647–648
metrology, 675–678
no inspection vs., 666–668
noncontact inspection techniques, 680
noncontact optical inspection methods, 707–708
off-line, 657–658
on-line/in-process inspection, 658–659
partially distributed, 665–666
practical guidelines from equations, 669
procedure, 647–648
product, process monitoring vs., 659–660
quantitative analysis of, 661–669
sampling, 651–653
cost of (example), 668
sampling plans, types of, 651–652
stylus instruments, 696–697
surface measurement, 695–698
technologies, 674–675
testing vs., 650–651
Type I and Type II errors, 648
types of, 646–647
for variables, 646–647
Inspection and testing, 50
Instruction list (IL), 283–285
Integrated circuit card, 360
Integrated circuits, 87
Integration of operations, 33
Intelligent robot, 238
Interchangeable fingers, 240
Interchangeable parts, 86, 418, 419
Interference checking, 719
Interlock and sensor commands, 255–256
Interlocks, 117
Intermittent transport, 423
Internal interrupts, 118
Internal logistics, 291
Internal noise factors, 632
Internal sensors, 240
International Organization for Standardization (ISO), 636
International outsourcing, 18
International Standard
Programmable Controllers (IEC 1131-3), 282
International Standard Industrial Classification (ISIC) of industries, 44
International System of Units (SI), 678
Internet, and customer requirements, methods of capturing, 730
Interrupt feature, 114
Interrupt system, 117–119
external, 118
internal, 118
multilevel, 118–119
single-level, 118–119
single-level vs. multilevel interrupt systems (example), 118–119
Interviews, and customer requirements, methods of capturing, 730
Inventory control, 24, 725, 755, 771–778
order point inventory systems, 771–775
work-in-process inventory costs, 775–778
Inventory planning, 725
Inventory status, 759
Inversion of a variable, 269
Inverters, 140
Investment project management, 750
Iron Age, 41
ISO 9000, 636–637
Item location file, 343
Item master data, 759
Jacquard loom, 86
Japan, 18
JAVA programming language, 87
Jefferson, Thomas, 42
Jib crane, 311
Jidoka, 798
Job sequencing, 767
Job shop, 51
Job traveler, 769
Joint drive systems, 236–237
Joint notation system, 235
Jointed-arm robot, body-and-arm assembly, 233–234
Joints:
industrial robots, 230, 231–233
types of, 232–233
Juran, J., 618 fn
Just-in-time (JIT) production, 61, 341, 785–807
autonamation, 797–801
elements of, 787
kanban system, 789, 791
manufacturing activities, 788–790
muda, 788–790, 798
on-time deliveries, zero defects, and reliable equipment, 797
production leveling, 796–797
as pull system of production control, 791
setup time reduction for smaller batch sizes, 793–796
systems, 725, 790–797
worker involvement, 801–807
continuous improvement, 802
visual management and 5s, 802–803
workforce and supplier base, 797
L
Ladder layout, 566
Ladder logic diagrams, 274–278, 283, 285
coils, 274
contacts, 274
control relay operation (example), 276–277
inputs, 274–275
nodes, 274
push-button switch (example), 276
simple lamp circuits (example), 276
symbols used in, 275
Largest candidate rule, 433–435
Laser beam cutting, power form, 89
Laser cutting, and industrial robots, 247
Laser etching, and bar codes, 367
Laser printing, and bar codes, 367
Laser systems, 705–706
Launching discipline, 444
Lead time, 760–761
Lean production, 19, 60–62, 739, 802
defined, 61, 786
mass production compared to, 786
system ingredients, 786–787
Lever, 86
Lights out operation, 399
Limit switch (mechanical), 133–134
Line balancing, 740
mixed model assembly lines, 440–443
Line balancing algorithms, 433–438
Kilbridge and Wester method, 435–437
largest candidate rule, 433–435
ranked positional weights (RPW) method, 437–438
Line balancing efficiency, 433
measures of, 432–433
Line balancing problem, 429–433
automated production lines, 478–479
example, 431–432
line balance efficiency, measures of, 432–433
minimum rational work elements, 429–430
precedence constraints, 430–431
worker requirements, 432–433
Line controllers, 474
Line efficiency, 433
manual assembly lines, 451
single model assembly lines, 426
Line pacing, 418, 423–425
levels of pacing, 424
no pacing, 424–425
pacing with margin, 424
rigid pacing, 424
Linear array measuring scheme, 706
Linear joint, 232
Linear (one-dimensional) bar codes, 362–368
Linear solenoids, 141–142
Linear transfer systems, 469–470
Linear variable differential transformer, 133
Linear width-modulated bar code technology, 362
Links, industrial robots, 231–233
Little's formula, 587
Load/unload stations, 562–563
Local outsourcing, 118
Lock-step mode, 141
Logic control, 267–273
boolean algebra and truth tables, 268–269
elements of, 268
using robotics to illustrate, 267–268
Logical algebra, 268
Logical product, 269
Logical sum, 269
Logistics, 290
Loop layout, 566
Lot sampling, 651
Lot tolerance percent defective (LTPD), 652
Low production, 51, 52–53
Low-energy laser beams, 705
M
Machine annual cost, 77
Machine cell design, 528
Machine cells, 376, 378, 392, 410–411
design, 536–539
formal, 540
group, with manual handling, 536–537
group, with semi-integrated handling, 536
key machines, 539
layouts, 536–539
and part movement, 537
U-shape layout, 538
single, 536
types of, 536
virtual, 540
Machine clusters, 376, 395, 410–413
Machine control unit (MCU), 159, 166–168
central processing unit (CPU), 166
I/O interface, 167
machine tool axes, controls for, 167
memory, 166–167
personal computers (PCs) and, 168
sequence controls, 168
spindle speed, controls for, 167
Machine level, of automation, 101
Machine loading, 767
Machine reader or scanner, 359
Machine tools, 41, 86
Machine vision, 241, 373, 698–704
applications, 703–704
binary vision system, 700
conventional optical instruments, 705
defined, 698
grayscale system, 700
illuminat,ion, 701–702
image acquisition and digitization, 698–701
and inspection, 703–704
interpretation, 703
laser systems, 705–706
lighting, categories of, 701
linear array measuring scheme, 706
object recognition, 703
optical comparator, 705
optical triangulation techniques, 706–723
part identification applications, 704
pattern recognition, 703
system, basic functions of, 699
Machine-mounted inspection probes, 694–695
Machining, 48, 474
power form, 89
Machining centers, 403–404
classifications of, 404
defined, 403
numerical control, 404
Machining processes, 41
and industrial robots, 247
Machining stations, 563
Magnetic stripes, 372
Magnetic technologies, 360
Magnetized devices, 239
Maintenance and repair diagnostics, 97–98
Major words, 213
Make or buy decision, 740–742
Make-to-stock situation, 771–772
Manned workstations, 389
Manning levels, 385–386, 420–421
Manometer, 133
Manual assembly lines, 376, 417–463
adjacent stations, sharing work
between, 452
alternative assembly systems, 454–456
assembly workstations, 420–421
defined, 419
design of, 451–452
fundamentals of, 419–426
levels of pacing, 424
line efficiency, 451
line pacing, 423–425
mechanized stations, changing
workhead speeds at, 452
methods analysis, 451–452
origins of, 419–420
parallel stations, 453
preassembly of components, 452
product variety, coping with,
425–426
storage buffers, 452–453
subdividing work elements, 452
utility workers, 452
work transport systems, 421–423
workstations, 450–451
zoning/constraints, 453
Manual data input (MDI), 195–196
Manual inspection, 647–648
Manual labor:
in factory operations, 29–30
in production systems, 29–31
Manual part programming, 187–189,
205–212
Manual production, 34
Manual work systems, 19–20
Manually operated machines, 377
Manually operated station, 395–396
Manufactured products, 45–46
Manufacturing:
defined, 39–40
historical note, 17–18, 40–41
origin of word, 17
Manufacturing activities, 788
Manufacturing capability, 59
Manufacturing control, 24
Manufacturing costs, 64, 73–78
direct labor cost, 74
estimating, 76
fixed costs, 73
material cost, 74
overhead costs, 74
variable costs, 73
Manufacturing execution systems
(MESs), 754, 765
Manufacturing industries, 43–45
Manufacturing lead time (MLT),
.70–72, 760–761, 775
Manufacturing metrics, 64–84
Manufacturing operations, 39–63
assembly operations, 46, 49
processing operations, 46–49
Manufacturing planning, 24, 724–725
Manufacturing R&D, 751
Manufacturing resource planning
(MRP II), 755, 778–779
Manufacturing support systems,
19–20, 697
business functions, 23
labor in, 30–31
manufacturing control, 24
manufacturing planning, 24
product design, 23–24
Manufacturing systems, 19, 20,
375–393
classification scheme for, 382–392
automation and manning levels,
385–386
factors in, 382
number of workstations, 383–384
part or product variety, 386–389
system layout, 384–385
types of operations
performed, 383
components of, 377–382
compensation control system, 381–382
defined, 102
human resources, 382
material handling system, 378–379
mixed model, flexibility in, 387–389
multi-station manufacturing
systems with fixed routing,
391–392
multi-station systems with variable
routing, 392
production machines, 377–378
reconfigurable, 389
single-station cells, 389–391
MARK I, 86
Mass production, 42, 54, 66–67
Mass properties analysis, 718
Master black belts, 625
Master production planning, 754
Master production schedule (MPS), 24, 754, 756–757
Mastercam, 195
Material characteristics, 292–293
Material cost, 74
Material handling:
 - cost of, 290
 - defined, 298
 - design, 292–295
 - flow rate, 293
 - material characteristics, 292–293
 - plant layout, 292–293
 - routing, 292
 - scheduling, 292
 - unit load principle, 294–295
 - equipment, 291–292
 - identification and tracking systems, 292
 - importance of, 289–290
 - logistics, 290
 - material transport equipment, 291
 - storage systems, 291
 - unit loads, 294–295
 - unitizing equipment, 291
Material handling and storage, 33, 49
Material handling and storage systems, 564–567
 - equipment, 565
 - FMS layout configurations, 565–567
 - in-line layout, 565
 - ladder layout, 566
 - loop layout, 566
 - open field layout, 566
 - robot-centered layout, 567
 - functions of, 564
Material handling applications, robots, 242–244
 - machine loading and/or unloading, 243–244
 - material transfer, 242–243
Material Handling Industry of America (MHIA), 289
Material Handling Institute, Inc., 359
Material handling system, 378–381
 - loading, positioning, and unloading, 379
 - pallet fixtures, 380
 - work carriers, 380–381
 - work transport between stations, 379–380
Material handling technologies, 19
Material removal processes, 48
Material requirements planning (MRP), 24, 30, 754, 757–763, 785, 775
 - capacity planning, 763–795
 - defined, 757
 - extensions of, 778–781
 - enterprise resource planning (ERP), 779–781
 - manufacturing resource planning (MRPII), 778–779
 - how it works, 759–763
 - inputs to the MRP system, 758–759
 - outputs and benefits, 763
Material transport equipment, 291–310
 - automated guided vehicle system (AGVS), 298–304
 - conveyors, 305–310
 - cranes/hoists, 310–311
 - industrial trucks, 295–298
 - layout types, 294
 - monorails/rail-guided vehicles, 304–305
Material transport systems, 289–328
 - analysis of, 312–321
 - conveyor analysis, 317–321
 - vehicle-based systems, 312–317
Matrix symbology, two-dimensional (2-D) bar codes, 369
McDonough, James, 156
Mean time between failures (MTBF), 69–70
 - determine, 439–440
Mean time to repair (MTTR), 69–70
Measurement, defined, 675
 - measurement standards and systems, 678–679
Measuring devices, 680–681
 - accuracy, 675–676
 - analog versus digital instruments, 677
 - calibration, 677–678
 - characteristics of, 675
 - high reliability, 677
 - precision, 675–676
 - resolution, 676
 - sensitivity, 676
 - speed of response, 676
 - wide operating range, 677
Mechanical grippers, 239
Mechanized work transport, 422–423
 - asynchronous transport systems, 423
 - continuous transport system, 422–423
 - intermittent transport, 423
 - synchronous transport systems, 423
Medium production, 51, 53–54
Memory chips, 87
Merchant, Eugene, 49
Metal machining operations, and industrial robots, 243
Metallurgy, 40–41
Metalworking, 40–41
Metrology, defined, 675
Microcomputers, 114
Microsensors, 132
Mill, 41, 48
Milling machine modules, 563
Mill-turn center, 404–405
 - operation of, 406
Minicomputers, 114
Minor words, 213
Mitrofanov, S., 524
Mixed model assembly lines, 425–426, 438–440
 - defined, 438
 - fixed-rate launching, 445–450
 - for three or more models, 447–450
 - for two models, 435–447
 - line balancing, 444–445
 - model launching, 443–450
 - number of workers required, determining, 439–440
 - variable-rate launching, 444–445
 - workload, 439
Mixed model manufacturing systems, flexibility in, 387–389
Mixed-mode structure, 529
Mixed-model production line, 54
 - MODICON, 279
Module fixture, 540
 - Modular fixture, 540
 - Modular pallet fixtures, 380
Molding, 48
 - Monocode, 529
 - Monorail, 304
 - Monorails/rail-guided vehicles, 304–305
Morley, Richard, 279
Motion control systems, 160–164
 - absolute vs. incremental positioning, 162–163
interpolation methods, 162–163
point-to-point vs. continuous path control, 160–161
Motion programming, 253–254
Motion study, 42
Moving assembly line, 86
Moving beam bar code scanners, 366
Moving ram design, 686
Moving table design, 686
MRP, See Material requirements planning (MRP)
Muda, 788–790, 798
Multilevel interrupt system, 118–119
Multiple fingered grippers, 240
Multiplexers, 144–145
Multi-station manufacturing systems with fixed routing, 391–392
assembly machine as a game of chance, 506–507
performance measures, 507–510
Multitasking, 115
Multitasking machine, 405
N
Nailing, 41
National Retail Merchants Association (NRMA), 372–373
NC, See Numerical control (NC)
NC positioning systems:
addressable points, 184
closed-loop systems, 179–180, 182–184
color resolution, 184–186
defined, 179
engineering analysis of, 179–186
open-loop systems, 179, 180–182
precision in, 184–186
NC turning center, 404
Near net shape processes, 738
Negation of a variable, 269
Negative zoning constraint, 453
Net shape processes, 738
Netting, 760
Network diagrams, 312
New part test, 558
No pacing (pacing level), 424–425
Noise factors, 631–632
Noncontact bar code readers, 364
Noncontact optical inspection methods, 707–708
electrical field techniques, 707
radiation techniques, 707–708
ultrasonic inspection methods, 708
Nondestructive evaluation methods, 707
Nondestructive evaluation (NDE), 651
Nondestructive testing (NDT), 651
Nonoptical inspection technologies, 679
Nonpowered conveyors, 305
Nontraditional processes, 48
Normally closed contact, 275
Normally open contact, 275
North American Free Trade Agreement (NAFTA), 29
Numerical control machine, 86
Numerical control (NC), 123, 155–228, See also Computer numerical control (CNC);
Direct numerical control (DNC); Part programming
advantages of, 177–178
applications, 172–179
basic components of an NC system, 158–159
component insertion machines, 176
computer numerical control (CNC), 158, 159, 164–169
coordinate measuring machines, 177
coordinate systems, 159–160
defined, 156
direct numerical control (DNC), 158, 169–172
disadvantages of, 178–179
drafting machines, 176
electrical wire wrap machines, 176
filament winding machines for polymer composites, 177
historical note, 156–158
machine tool applications, 172–176
machine tools, 114
and metalworking processes, 175–176
motion control systems, 160–164
part program, 158, 168
part programmer, 158
part programming, 187–196
processing equipment, 159
straightcut NC, 161
tape laying machines for polymer composites, 177
technology fundamentals, 158–164
Object recognition, 703
Obstacle detection sensor, 304
Occupational Safety and Health Act (OSHA), 28
Off-line inspection, 657–658
Ohmmeter, 133
Ohno, Taiichi, 786–788, 797
On-board vehicle sensing, 302
100% manual inspection, 653–655
On-line inspection, 33
On-line search strategies, 111–112
On-line/in-process inspection, 658–659
On-line/post-process inspection, 659
On-machine inspection, 694
Open architecture philosophy, trend toward, 126
Open field layout, 566
Open loop control system, 94
compared to a closed loop system, 94–95
Open-loop positioning systems, 179, 180–182
Operating capability, 801
Operating point, 138
Operation sheet, See Route sheet
Operation tear strips, 769
Operational efficiency, need for, 18
Operations research, 751
Operations to enhance properties, 738
Operator-initiated events, 116
Opitz, H., 530–531
Opitz parts classification and coding system, 530–532
element, 531–532
Optical bar codes, 770
Optical character recognition (OCR), 372–373
Optical encoders, 133, 182
Optical inspection technologies, 679
Optical sensors, 241
Optical technologies, 360
Optical triangulation techniques, 706–707
Optimum batch sizes, 774
Order point inventory systems, 771–775
economic order quantity formula, 771–774
reorder point systems, 774–777
Order progress, 767–768
Order release, 765–766
Order scheduling, 766–767
Ordering lead time, 760
Orientor, 500
Orthogonal joint, 232
Index

Out of statistical control, use of term, 606
Output interlock, 117
Output scan, 281
Outsourcing, 18
Overall equipment effectiveness (OEE), 801
Overhead costs, 74–75
allocation of, 75
Overhead rate:
defined, 75
determining, 75–76
Overhead trolley conveyors, 307
Pacing, 418
Pacing with margin, 424
Painting, 49
Pallet fixtures, 380, 466
Pallet rack, 334
Palletized transfer line, 466
Palletizers, 291
Palletizing, and industrial robots, 242–243
Parallel stations, 453–454
Parametric programming, 540
Parents, use of term, 759
Pareto charts, 617
Pareto, Vilfredo, 618
Pareto’s Law, 617–618
Parsons, John, 86, 156–157
Part families, 523–527
defined, 525
identifying, 524
Part production capacity chart, 804
Part programming, 187–196
with APT, 213–221
color assistant, 189–192
manual, 187–189
manual data input (MDI), 195–196
using CAD/CAM, 192–195
Part variety test, 557
Partial automation:
example, 514–515
storage buffers (example), 515
Partially distributed inspection, 665–666
Particulate processing, 48
Part-machine incidence matrix, 533
Parts classification and coding systems, 528–532
chain-type structure, 529
features of, 528–529

hierarchical structure, 529
mixed-mode structure, 529
Opitz system, 530–531
Parts delivery hardware, 500–503
Parts feeder, 500
Parts selector, 503
Parts sorting, 657
Part-shaping operations, 48
Passive sensors, 132
Path switch select method, 301
Pattern recognition, 703
PC-based CAD system, 723
PDF-417, 373
Pease, William, 156
Pen plotters, 723
Pentium microprocessors, 87
Personal computers (PCs), 86, 115, 770
control software, 474
and MCU, 168
and process control, 125–126
using soft logic, 285–286
PFA, See Production flow analysis (PFA)
Photoelectric sensor array, 133
Photoelectric switch, 133
Photometer, 133
Physical product limitations, plants/companies, 60
Physical vapor deposition, 49
“Pick and load” operations, 344
Pick-and-place operation, and industrial robots, 242
Pickup-and-deposit (P&D) stations, 338
Piece rate system, 42
Piezoelectric transducer, 133
Pitch, robot wrist assembly, 234–235
Pixels, 698
Placement device, 502
Planning:
advanced manufacturing planning, 748–751
aggregate production planning, 754, 756
automated process planning, 528
capacity planning, 24, 754, 763–765
computer-aided process planning (CAP), 724–725, 742–744
terprise resource planning (ERP), 127, 714, 728, 755, 779–781
facilities planning, 750
inventory planning, 725
manufacturing planning, 24, 724–725
manufacturing resource planning (MRP II), 755, 778–779
master production planning, 754
material requirements planning (MRP), 24, 30, 754, 757–763, 785, 775
process planning, 24, 728, 736–742
production planning and control (PPC), 725, 743–784
defined, 753
trough-cut capacity planning (RCCP), 764
Plant capacity:
effect of utilization and availability on, 70
quantitative measures of, 67
Plant layout, 20, 53, 293–294
Plant layout design scores, 720
Plant level, of automation, 101
Plant management, 31
Plant operations control, 34
Plastic extrusion, 401
Plastic injection molding, 400
Plastic molding, and industrial robots, 243
Playback control, robot control systems, continuous path control, playback with, 238
PLCs, See Programmable logic controllers (PLCs)
Pneumatic actuators, 135, 142–144
Pneumatic drive systems, and robot joints, 236
Point-to-point systems, defined, 161
Polar configuration, robot body-and-arm assembly, 233–234
Polishing, 40
Polling (data sampling), 116–117
Polycode, 529
Portable CMMs, 695
Portable racks, 336
Portable scanners, 366
Position constraint, 453
Position sensors, robot joints, 236
Positioning systems, 94–95
defined, 161
Positive zoning constraint, 453
Postprocessor statements, 225–227
Potentiometer, 133
Power, 85
Power loom, 41
Power supply, 280
Power-and-free overhead trolley conveyors, 307
Powered conveyors, 305
Powered trucks, 297
Precedence diagram, 430-431
Predictive maintenance, 800
Preparatory words, 188
Prepunched cards, 769
Press fitting, 49
Presses, and numerical control, 176
Pressing, 48
Pressworking, and industrial robots, 244
Preventive maintenance, 800
Primary handling system, 565
Primary industries, 43
Priority control, 767
Probes, on machine tools, 694-695
Process:
 defined, 88
 power for, 88-89
Process analysis, Six Sigma, 629
Process capability:
 defined, 508
 and tolerances, 608-609
Process capability index, 609
Process control, 34, 725
Process fine-tuning, 751
Process industries:
 discrete manufacturing industries vs., 105-107
 levels of automation in, 105-106
 variables and parameters in, 105-106
Process layout, 53, 54
Product:
 variety, 51
 coping with, 425-426
Production capacity, 67-68
 defined, 67
 plants/companies, 60
Production control, 754
Production facilities, 50-55
 high production, 51, 54-55
 low production, 51, 52-53
 medium production, 51, 53-54
Production flow analysis (PFA),
 532-534
 cluster analysis, 533-534
 data collection, 532
 PFA chart, 533-534
 sortation of process routings, 532-533
Production kanban (P-kanban), 791
Production lines, 378, 391
 origins of, 419
Production machines, 377-378
 stopping automatically, 62
Production models, averaging procedures, 82-84
Production performance, mathematical models of,
 65-72
Production planning, defined, 754
Production planning and control (PPC), 725, 753-784
 defined, 753
Production quantity, 51
Production rate, 65-67
 batch and job shop production, 65-66
 cycle time, 65
 mass production, 66-67
Production systems, 18, 19-24
 automation in, 25-28
 defined, 19, 102
 facilities, 19-22
 manual labor in, 29-31
 manufacturing support systems, 19
Productivity/product relationships, 55-60
 limitations and capabilities of a manufacturing plant, 59-60
 part complexity, 56-59
 product complexity, 56-57
 production quantity and product variety, 55-56
PROFIL, 192
Program of instructions, 85, 86, 90-93
 part programs, 90
 programmed work cycle, decision-making in, 92-93
 work cycle program, 80-82
Program-initiated event, 116
Programmable automation, 26-27
Programmable logic controllers (PLCs), 86, 114, 123,
 278-285, 464
 analog control, 282
 arithmetic functions, 282
 components of, 280-281
 data processing and reporting, 282
 input/output module, 281
 matrix functions, 282
 memory unit, 280
 operating cycle, 281-282
 power supply, 280
 processor, 280
 programming, 281, 282-285
 function block diagrams (FBDs), 283
 instruction list (IL), 283-285
 ladder logic diagrams, 283, 285
 sequential function chart (SFCs), 283
 structured text (ST), 285
Programmable parts feeder, 503
Programming and computer operation, 31
Programming, defined, 282
Programs, 26
Index

Progress reports, 768
Property-enhancing operations, 48
Proportional-integral-derivative (PID) control, 282
Proximity sensors, 241
Proximity switch, 134
Pulse counters, 151
Pulse data, 107
Pulse generator, 151
Pulse train, 151
Punch presses, and numerical control, 176
Purchase orders, 763

Q
QC, See Quality control (QC)
Quality circles, 802
Quality control (QC), 24, 725, See also Six Sigma; Statistical process control (SPC)
defined, 602
freedom from deficiencies, 602–603
and inspection, 646
ISO 9000, 636–637
modern, 605–606
process variability/process capability, 622–625
product features, 602–603
Six Sigma, 621–631
statistical process control (SPC), 610–621
technologies, 606
total quality management (TQM), 605–606
traditional, 603, 604–605
Quality engineering:
robust design, 631–632
Taguchi loss function, 632–636
Taguchi methods in, 631–636
Quality expectations, 18
Quality function deployment (QFD), 728–733
customer requirements, methods of capturing, 730–731
defined, 728
house of quality (example), 732–733
Quality programs, 19, 601–644
Quality system, ISO definition of, 637
Quantitative metrics, 64
Quantity production, 54
Quantization error, 146
Quantization-level spacing, 146
Quenching, 41
Quiet zone, 364

R
Rack systems, 334
Radiation inspection techniques, 707–708
Radiation pyrometer, 134
Radio frequency data communication (RFDC), 372
Radio frequency identification (RFID), 292, 360, 370–372, 770
Radio frequency (RF), 303
Rail-guided vehicles, 304–305
Random access memory (RAM), 87
Random errors, 98
Random variations, 606
Random-order FMS, 561
Rank order clustering, 534
grouping parts/machines by, 541–543
Ranked positional weights (RPW) method, 437–438
Rapid prototyping, 720
Real-time controller, 115
Recirculating conveyors, 309
analysis of, 320–321
Reconfigurable manufacturing systems, 389
Reduced setup times, 61
Regulatory control, 108–109
Relationship matrix, 730
Remote cell stations, 303
Reorder point inventory systems, 774–775
Repair procedure recommendation, 97
Repeat operation, part movement, 537
Repeatability, in robots, defined, 259
Repositioning efficiency, 433
Repositioning time, 400, 411
Resistance-temperature detector, 134
Resolution, vision system, 700
Retrieval CAPP system, 742–743
Revolution joint, 232
RFID, See Radio frequency identification (RFID)
Right-hand rule, 159
Rigid pacing, 424
Riveting, 41
Rivets, 49
Robot accuracy and repeatability, 257–259
accuracy, defined, 258
addressable points, 257
control resolution, 257–258
example, 259
repeatability, defined, 258
Robot control systems, 237–238
Robot-centered layout, 567
Robotics, 123
Robots, origin of word, 230
Robust design, 631–632, 728
defined, 632
Roll, robot wrist assembly, 234–235
Roller conveyors, 305
Rolling Stones tour plan (2005–2006) example, 48
Root cause analysis, Six Sigma, 629–630
Root programming, 248–257
computations and program logic, 256
interlock and sensor commands, 255–256
languages, 251–256
leadthrough programming, 249–252
motion programming, 253–254
simulation and off-line programming, 256–257
Roots, industrial, 114
Ross, Douglas, 157–158
Rossum's Universal Robots (Capek), 230
Rotary configuration, automated production lines, 467–468
Rotary indexing mechanisms, 471–472
cam drive mechanisms, 472
Geneva mechanism, 471–472
Rotary indexing systems, 467–468
Rotational joint, 232
Rotor, 136
Rough-cut capacity planning (RCCP), 764
Route sheet, 532, 737, 742
Routing, 293
and industrial robots, 247

S
Safety monitoring, 95–96
Sampling, 651–653, See also Polling (data sampling)
acceptance, 651
attributes, 651
lot, 651
operating characteristic curve, 652–653
statistical errors in, 652
variables, 651
Sampling rate, 145
Sand blasting, 48–49
Satellite terminals, 770
Scan, 281
Scan time, 281
Scanning, See Polling (data sampling)
Scanning laser device, 705–706
SCARA (Selective Compliance Assembly Robot Arm), body-and-arm assembly, 233, 235
Scatter diagrams, 619–620
Schedule change test, 557
Scheduling, 293
Scientific management, 42
Scientific Principles of Group Technology (Mitrofanov), 524
Screening, See 100% manual inspection
Screw, 86
Screw conveyors, 307
Screw cutting lathe, 41
Second Industrial Revolution, 42
Secondary code, 530
Secondary handling system, 565
Secondary industries, 43
Secondary processes, 738
Segmentation, 701
Segmented in-line configuration, 466–467
automated production lines, 466–467
Selector, 500
Self-guided vehicles (SGVs), 301–302
Semi-automated machine, 22, 377
Sensors, 131–135, 144
active, 132
binary, 132
classification of, 131
external, 240–241
industrial robots, 240–241
internal, 240
microsensors, 132
obstacle detection, 304
optical, 241
passive, 132
position, 236
proximity, 241
in robotics, 240–241
sensitivity of, 134
tactile, 134, 240–241
ultrasonic range, 134
Sensory feedback, 240
Sequencing, 273–274
Sequential control, 113
Sequential function chart (SFCs), 283
Service sector, trend toward, 18
Servomotor, 137
Set point control, 114
Setup cost, 773
Setup time (changeover time), 54
Setup time in batch production, and workstation requirements, 407–408
SFC, See Shop floor control (SFC)
Shaping, 41
Sheet metal punching/blanking, power form, 89
Sheet metal stamping, 400
Shelves, 336
Shingo, Shigeo, 793
Shop floor control (SFC), 24, 121, 725, 754, 765–771 defined, 765
factory data collection system, 768
order progress, 767–768
order release, 765–766
order scheduling, 766–767
Shop loading, 767
Shop packet, 765
Shortest processing time, 767
Shot peening, 48–49
Side lighting, 701
Signal conditioning, 144
Simple mechanical devices, 239
Simultaneous operations, 33
Single command cycle, 331
Single direction conveyor, analysis of, 318–319
Single direction conveyors, 309
Single machine cell, 558
Single model assembly lines, 425–426, See also Line balancing analysis of, 426–433
line balancing problem, 429–433
line efficiency, 426
repositioning losses, 428–429
work content time, 427
workload, 427
Single station cell, 376
Single-level interrupt system, 118–119
Single-model production line, 54
Single-station automated cells, 396–401
applications of, 402–403
enablers for unattended cell operation, 397–398
parts storage subsystem and automatic parts transfer, 398–401
storage capacities greater than one, 400–401
storage capacity of one part, 399–400
Single-station cells, 389–391
Single-station manned cells, 395–396
applications of, 402
manually operated station, 395–396
semi-automated station, 396
Single-station manual assembly cell, 455
Single-station manufacturing cells, 394–416
analysis of, 406–413
applications of, 401–406
CNC machining centers, 403–406
single-station automated cells, 396–401
single-station manned cells, 395–396
Single-station manufacturing systems:
analysis of, 406–413
machine clusters, 410–413
number of workstations required, 406–410
Sintering, 48
Six Sigma, 19, 24, 621–631, 802
central concept of, 622
champion, use of term, 625
defined, 621
DMAIC procedure, 624–631, 802
analysis and prioritization, 630
basic data analysis, 628–630
charter, 625
control plan development, 631
current sigma level, measuring, 627–628
customer(s), identifying, 625–626
data collection, 626–627
generation of alternative improvements, 630
high-level process map, 626
improvements implementation, 630
organizing the project team, 625
process analysis, 629
root cause analysis, 629–630
transferring responsibility and disbanding the team, 631
goals of, 621
six sigma level vs. three sigma level, 623
Skate-wheel conveyors, 305
Slack time, 767
Slewling mode, 141
Smart card, 360
Smelting, 41
Smith, Adam, 419
Soft logic, PCs using, 285–286
Soft product variety, 52
Software systems development, 751
Sokolovskiy, A., 524
Soldering, 41, 49
Solenoids, 141–142
Solidification processes, 48
Solid-state cameras, 700
SolidWorks, 195
Sortation, 657
South Korea, 18
SPC, See Statistical process control (SPC)
Specialization of labor, 418
Specialization of operations, 33
Speed, industrial robots, 236
Speed of response, industrial robots, 236
Spinning, 40
Spinning jenny, 41
Spot welding, 244
Spray coating, 245–246
Stability, 678
industrial robots, 236
Stacking operations, and industrial robots, 242
Standard gripper products, 240
Standard operating procedure (SOP), 631
Standard operations routine, 805
Standard work-in-process quantity, 807
Standardized work procedures, 804–807
Standards, 42
Stationary scanners, 366
Statistical process control (SPC), 24, 610–621, See also Control charts
cause-and-effect diagrams, 620
check sheets, 618
control charts, 610–616
defect concentration diagrams, 618–619
defined, 610
histograms, 617
implementing, 620–621
Pareto charts, 617
Pareto’s Law, 617–618
scatter diagrams, 619–620
Statistical quality control, 19
Stator, 136
Status monitoring, 97
Steady-state optimization, 109–110
Steam engine, 86
Steamboat, 86
Step angles, 140, 180
Stepper motors/stepping motors, 140–141
Stereolithography, 720
Stock-keeping-unit (SKU), 332–333
Stock-out cost, 771
Storage buffers: automated production lines, 472–473
manual assembly lines, 452–453
Storage capacity, 330
Storage cost, 772–773
Storage density, 330–331
Storage location strategies, 332–333
Storage systems, 291, 329–357
automated, 337–343
bulk storage, 334
cantilever racks, 336
carousel, 343–345
drawer storage, 336
drive-through racks, 336
engineering analysis of, 345–352
flow-through racks, 336
function of, 329
performance, 330–332
portable racks, 336
rack systems, 334
shelving and bins, 336
storage location strategies, 332–333
Straight turning, 173
Straightcut NC, 161
Strain gage, 134
Strobe lighting, 701
Structured lighting, 701
Structured text (ST), 285
Stulen, Frank, 86, 156–157
Stylus instruments, 696–697
Subassembly, 46, 247
Subsidiary data, 759
Successive approximation method, 146
Supervisory control, 123–124
Supplementary code, 530
Supply chain management, 755
Supporting machines, 539
Surface plate, 681, 694
Surface processing operations, 48–49
Surface roughness, 696–697
Surface treatments, 48–49
Susskind, Alfred, 156
Switching systems, 267
Synchronous transport systems, 423
System 24 concept, 555
System throughput, 331
Systematic errors, 96, 675
System-initiated event, 116
T
Tachometer, 134
Tactile sensors, 134, 240–241
Taguchi loss function, 632–636, 728
Taguchi methods, 631–636
Take time, 804–807
Tape format, 188
Target point, 160
Taylor, Frederick W. and Lilian, 42
Technological processing capability, 114
plants/companies, 60
Tempering, 41
Template matching, 703
Ten strategies for automation and process improvement, 32–33
Tertiary industries, 43
Testing, inspection vs., 650–651
Thermal cutting machines, and numerical control, 176
Thermal transfer, and bar codes printing, 367
Thermistor, 134
Thermocouple, 134
Thin film deposition, 49
Thomson Ramo Woodridge (TRW), 114
Thread checking software, 692
Threaded fasteners, 49
Three-dimensional vision systems, 804
Thresholding, 701–702
Time buckets, 758–759
Time study, 42
Time-driven change, 112–113, 115
Timer, 270
Timer-initiated actions, 115
Tolerance, 162
Tolerance analysis, 719
Tolerance time, 424, 451
Top-driven unit, 344
Torque-speed curve, 138
Total productive maintenance (TPM), 62, 800–801
Touch techniques, 360
Touch-sensitive probes, 694
Touch-trigger probes, 683
Towing tractors, 297–298
Towline, 307
Toyota Motor Company, 714
Toyota Production System, 739, 786–788, 800–801
jidoka, 798–799
kanban, 791–793
muda, 788–790, 798
production equipment, 800
reliability, 797–798
standard work-in-process quantity, 807
standardized work procedures, 804–807
takt time, 805–806
work procedures, 804
Traffic factor, 313
Transducers, 131, 144
Transfer function, 132
Transfer lines, 86, 464, 466
analysis of automated production lines, 478–480
flexible, 561
free, 466
historical note, 475
with internal storage buffers, 483–490
blocking, 483
lines with more than two stages, 489
practical guidelines from equations, 489–490
starving, 483
storage buffer effectiveness, limits of, 483–484
two-stage transfer line analysis, 484–485
with no internal parts storage, 479–482
cycle time analysis, 479–480
performance measures, 480–482
practical guidelines from equations, 480–482
palletized, 466
Transfer machine, 464
Transistor, 87
Transport kanban (T-kanban), 791
Triangulation, 706–707
Trolley, 307
Truth tables, 269–270
Tube bending machines, and numerical control, 176
Turning, 41, 48
Turning modules, 563
twisting joint, 232
Two-dimensional (2-D) bar codes, 368–370
matrix symbology, 369–370
stacked bar codes, 369
Two-dimensional bar codes, 368–370
Two-dimensional vision systems, 698
Type I error, 648, 652
Type II error, 648, 652
U
Ultrasonic inspection methods, 708
Ultrasonic range sensor, 134
Uniform annual cost (UAC), 77
Unit load principle, 294–295
Unit operations, 104
United States, 18
Unitizing equipment, 291
Unit-to-unit noise factors, 632
Universal machining center (UMC), 404
Universal Product Code (UPC), 363, 370
Unutilized station capacity, increasing (example), 585–586
Up counter, 273–274
Up/down counter, 274
Upstream allowance, 424
U.S. customary system (U.S.C.S.), 678
USA Principle, 31–32
Utility workers, 385, 421
manual assembly lines, 452
Utilization, 69, 70, 331, 580, 800
and workstation requirements, 407, 409–410
V
Vacuum grippers, 239
VAL language, 87
Value-adding activities, 61
Variable costs, 73
Variable routing, 379–380
Variable-rate launching, 444–445
Variables sampling plan, 651
Variant CAPP system, 742–743
Vehicle guidance technology, 300–302
Vehicle management and safety, 302–303
Vehicle safety, 304
Vehicle-based systems, 312–317
Vertical lift conveyors, 307–308
Vertical machining center (VMC), 404
Vibration-based conveyors, 307–308
Vidicon camera, 700
Virtual machine cells, 540
Virtual prototyping, 720
Vision systems, 698, See also Machine vision
Vision-guided robotic (VGR) system, 704
Visual inspection, 527
Visual management, 802–803
Visual workplace, 802
W
Walkie trucks, 297
Wasteful activities, 61
Waterjet cutting, and industrial robots, 247
Watt, James, 86
Watt's steam engine, 41
Wealth of Nations, The (Smith), 419
Weaving, 40
Weaving machines, 86
Welding, 49
arc, 244–245
forge, 41
fusion, 41
power form, 89
spot, 244
Welding machines, and numerical control, 176
Wheel, 86
White collar workers, 20
Whitney, Eli, 42, 419
Wide operating range, 677
Width-modulated bar codes, 362
Wilkinson, John, 41
Williamson, David, 555
Winch, 86
Windmills, 87
Windows (Microsoft), 87
Wire brushing, and industrial robots, 247
Woodworking, 40
Work carriers, 380–381
Index

Work cell, 806
Work center, 67
 hourly cost of (example), 78
Work content time, 427
Work cycle, steps in, 92
Work envelope, 236
Work flow principle, 418
Work order status reports, 768
Work orders, 763
Work sequence, 805–806
Work standards, computerized, 724
Work transport systems, 421–423
 blocked stations, 421
 manual methods of work transport, 421–422
 mechanized work transport, 422–423
 starving, 421
 storage buffers, 421
Work volume, 235
Worker involvement, 61
Worker teams, 621–622
 assembly by, 455
Worker-machine systems, 21–22
Workholders, 20, 379
Work-in-process (WIP), 72, 757
 inventory costs, 775–778
Workload, 384, 406–407
Workpart transfer system:
 automated production lines, 468–472
 linear transfer systems, 469–470
 rotary indexing mechanisms, 471–472
Workstation terminals, 770
Workstations, 377–378
 assembly, 420–421
 flexible manufacturing systems (FMSs), 562–564
 assembly, 563–564
 load/unload stations, 562–563
 machining stations, 563
 sheet-metal fabrication, 563
 manual assembly lines, 450–451
 number of, 383–384
 parts delivery, 500–503
Wrist configurations, industrial robots, 234–235

Y
 Yaw, robot wrist assembly, 234–235

Z
 Zero-order hold, 147–149
 Zone control, 302–303
 Zoning constraints, manual assembly lines, 453