19 scholars to tackle important scholarly attention and reach existing courses. Each volume findings, and considers the long-

Communicating Science

New Agendas in Communication

Edited by LeeAnn Kahlor and Patricia A. Stout
Contents

List of Illustrations vii

Foreword: Building a Context for the Next Century of Science Communication Research ix
SHARON DUNWOODY

Preface xiii

Introduction 1

PART I
Merging Theory and Practice: Models and Frameworks 9

1. A Critical Appraisal of Models of Public Understanding of Science: Using Practice to Inform Theory 11
DOMINIQUE BROSSARD AND BRUCE V. LEWENSTEIN

2. Framing Science: A New Paradigm in Public Engagement 40
MATTHEW C. NISBET

3. Focusing on Fairness in Science and Risk Communication 68
JOHN C. BESLEY

4. Understanding Public Response to Technology Advocacy Campaigns: A Persuasion Knowledge Approach 88
JANAS SINCLAIR AND BARBARA MILLER

5. Using Temporally Oriented Social Science Models and Audience Segmentation to Influence Environmental Behaviors 109
BRET R. SHAW
PART II
Characterization and Meaning-Making

6. Competing Characters in Science-Based Controversy: A Framework for Analysis
 LISA KERÄNEN

7. Exemplary Objects: The Role of Materiality, Sociality, and Rhetoric in Articulating Science through Model Organisms
 JOHN LYNCH

8. Expanding Notions of Scientific Argument: A Case Study of the Use of Scientific Argument by American Indians
 DANIELLE ENDRES

9. Moral Development Framing in Environmental Justice News Coverage
 KRISTEN ALLEY SWAIN

PART III
The Future

10. An Interdisciplinary Approach to Science Communication Education: A Case Study
 AMY R. PEARCE, ALDEMARO ROMERO, AND JOHN B. ZIBLUK

Notes on Contributors

Index
Index

<table>
<thead>
<tr>
<th>Academic Freedom Acts 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>accountability of industries 99–101; impact on attitudes 101–2; and industry familiarity 103</td>
</tr>
<tr>
<td>action to change behavior 115</td>
</tr>
<tr>
<td>advertising: benefits of 89; General Motors advert 88–9, 91, 105; see also technology advocacy</td>
</tr>
<tr>
<td>advocacy campaigns: reasons to study messages of 89; rise of 90; see also technology advocacy</td>
</tr>
<tr>
<td>agent knowledge 95, 95</td>
</tr>
<tr>
<td>Allum, N. C. 74</td>
</tr>
<tr>
<td>American Indians: challenge to authority of Western science 194–7; opposition to Yucca Mountain high-level nuclear waste repository 193–4; religion and science 191–2; and science as culture 190–1; use of traditional Western scientific arguments 198–202</td>
</tr>
<tr>
<td>Andreasen, A. R. 113</td>
</tr>
<tr>
<td>argument(s), scientific: American Indians challenge to authority of Western science 194–7; American Indians' use of traditional Western scientific arguments 198–202; cultural and scientific knowledge, clashes of 187–8; future research 202–4; interplay between science culture and spirituality 202–3; and public participation in environmental issues 203–4; relationship between indigenous and Western knowledge 204; use of science in 189</td>
</tr>
<tr>
<td>Aristotle 135</td>
</tr>
<tr>
<td>Arkansas State University: future for science communication at 249; model of science communication at 246, 247, 248–9; program in science communication 241–6</td>
</tr>
<tr>
<td>articulation: and representation 163–4; of science and rhetoric 162–70; theory 165–6, 170</td>
</tr>
<tr>
<td>audience segmentation 110–11; and social marketing 124–5; see also stages of change model</td>
</tr>
<tr>
<td>Begay, Marlene 199, 200</td>
</tr>
<tr>
<td>behavior effecting the environment: education as insufficient to change 109; processes of change for 110; social marketing, use of to change 109–10; see also diffusion of innovations model; stages of change model</td>
</tr>
<tr>
<td>Behe, Michael 50, 62n6</td>
</tr>
<tr>
<td>beleaguered administrator persona 148–52</td>
</tr>
<tr>
<td>Besley, J. C. 81</td>
</tr>
<tr>
<td>Bordogna, Francesca 136</td>
</tr>
<tr>
<td>Boyle, Robert 164</td>
</tr>
<tr>
<td>Break Through: From the Death of Environmentalism to the Politics of Possibility (Nordhaus and Schellenberger) 58</td>
</tr>
<tr>
<td>Brown, S. 214</td>
</tr>
<tr>
<td>Bush, George W. 51</td>
</tr>
<tr>
<td>campaigns, advocacy see advocacy campaigns; technology advocacy</td>
</tr>
<tr>
<td>Cancer Cluster Project 76–7</td>
</tr>
<tr>
<td>Ceccarelli, A. 163</td>
</tr>
<tr>
<td>change: processes of 110; see also stages of change model</td>
</tr>
</tbody>
</table>
| character: analyzing in science-based
controversies 155–7; perceptions of cultivated by rhetoric 135; and trust 135
citizen engagement, fairness in research on 71–2
Citizen’s School project 78–9
climate change, frames used 55–9
Coalition for the Public Understanding of Science (COPUS) 246
coal mining, campaign to promote 93–4
coding schemes based on justice 82
Coleman, C. 190, 191
Colman, A. 174
communication, communicators and scientists approaches to 237–8
communication behaviour and justice perceptions 75, 75
communities, knowledge based in 15
competence and trust 74
Condit, C. M. 192
conferences: for minority communities 23–7; Science, Evolution, and Creationism booklet 40–1
consumer knowledge, types of 94–6, 95
contemplation of behavior change 113–14
contextual model of PUOS 13–15, 16–17, 17, 23, 25–7, 29, 31
controversies, science-based: analysis of characters in 155–6; see also argument(s), scientific; Fisher controversy
corporate moral development 216–17
Creation: An Appeal to Save Life on Earth, The (Wilson) 58
creation science 49–53
credibility 72–4
culture: definition 189; interplay with science and spirituality 202–3;
knowledge from disputing science 194–7; science as 189–91; science as in opposition to 188–9
Cutler, B. D. 94
darwin’s Black Box (Behe) 50
Davis, R. H. 166, 167, 168
Dawkins, Richard 54
deficit model of PUOS 12–13, 14, 16–17, 17, 22–3, 26–7, 29, 41–3
Deloria, V. 191, 197, 201
Denton, R. E. 213
Depoe, S. 209
de Semir, V. 238–9
dialogue model of PUOS 16
diffusion of innovations model: and audience segmentation 110–11; as dynamic process 110; early adopters 120–1; early majorities 121; and future research 123; innovators 119–20; interpretation of 124; laggards 122–3; late majorities 122; and long-term behavior change 124; use of 119; use with stages of change model 123–4
Dingell, John D. 144
distributive justice 72, 81–2
documentary “A Question of Genes” 27–9
Dunwoody, S. 188, 238
Durham, Barbara 196, 198
Dysart, E. V. 190, 191
eyearly adopters of innovations 120–1
eyearly majorities 121
education in science communication: academic programs 233; call to increase 235; case studies 250; communicators and scientists approaches to communication 237–8; future for at Arkansas State University 249; interdisciplinary approach, review of 238–41; within journalism departments 236; model for at Arkansas State University 246, 247, 248–9; professionalization of 250; program at Arkansas State University 241–6; within science programs 235–6
emotions and behavior changes 114, 116
Entman, R. M. 212
environment: education as insufficient to change behavior 109; public participation in issues 203–4; social marketing, use in changing behavior 109–10; see also diffusion of innovations model; stages of change model
environmental justice movement: content analysis of news coverage of issues 222–6; defined 210; development of 210–11; future research 228–9; limitations of study 228; and news framing 211–14; news sourcing on environmental issues 214–15; pre-conventional rhetoric identified in research 226–8;
environmental justice movement - contd
prominent case 211; race and
perceptions of 213-14; research on
news coverage of issues 217, 218,
219-22, 220, 221; as a social
movement 213
“essential,” campaign 92
ethos 135-6, 137
Ethos of Rhetoric, The (Hyde) 136
evolution, framing used in conflicts over
49-55
Expelled: No Intelligence Allowed
54-5

Fabj, V. I. 198, 203
Fahar, B. 113

fairness: Cancer Cluster Project 76-7;
Citizen’s School project 78-9;
dimensions of 70; future research 79,
81-3; interpersonal 70, 72; as justice,
research on 74-6, 75; justice as,
social psychological research on
69-71; justice as, summary of
findings 80; measures of 81;
outcome 69-70; perceptions of local
scientists project 77-8; procedural
69-71; in research on citizen
engagement 71-2; and trust and
credibility 72-4
*Fairness and Competence in Citizen
Participation* (Renn, Webler &
Wiedemann) 71-2

familiarity with industry and trust and
accountability 103

Fineberg, Harvey 54

Fisher controversy: beleaguered
administrator *persona* 148-52;
competing assessments of Fisher 140;
origins of 139-40; *personae*,
emergence of during 138; *personae* as
focusing attention on Fisher 152-4;
personae as undercutting personal
ethos of Fisher 154-5; reluctant
apologist *persona* 144-8;
swashbuckling scientific
revolutionary persona 140-4;
vindication of Fisher 154
Flock of Dodos (Olson) 52

framing, news, and the environmental
justice movement 211-14
framing of science: benefits of 43; as
central to science journalism 61;
climate change 55-9; ethics of 61;
evolution 49-55; frame devices 45;
latent meanings of 45, 46; as neutral
organizing device 45; nuclear energy
46-7; as organizing and simplifying
issues 44; recurring, in policy debates
41; research on 43-4; *Science,
Evolution, and Creationism* booklet
40-1; scientist’s tool for
communicating truth 60-1; typology
of 46, 60

Frewer, L. J. 72, 73
Friedman, S. M. 188

“Friends of Coal (FOC)” campaign 92,
98, 101-2, 103
Friestad, M. 95, 96, 101
Fuller, S. 241
Futrell, R. 213

Gamson, William 44-5, 212
Geneletter 21-3

General Motors (GM), advertisement
for 88-9, 91, 105
God Delusion, The (Dawkins) 54
Goffman, Erving 43
Goodell, M. A. 176

“Good Ideas Are Growing” campaign
92, 100-1

Gore, Al 55, 58

Greenberg, M. 214
Greene, R. W. 163

Gross, A. 163

Habermas, J. 68
Haley, E. 99

Hartman, C. L. 99

Helmer, Bill 196, 198

hematopoietic stem cells (HSCs)
175-80

high-level nuclear waste: American
Indian challenge to Western science
194-7; American Indians use of
traditional Western scientific
arguments 198-202; in the US
192-3; Yucca Mountain repository
for 193-4

Hispanic radio shows 30-1

Human Genome Project (HGP):
analysis methods for case studies 19;
“A Question of Genes” documentary
27-9; conferences for minority
communities 23-7; funding for public
understanding of science projects 18;
Geneletter 21-3; radio shows in
Spanish 30-1; selection of project
 case studies 18-19; target audiences
 for outreach projects for 20
Hyde, Michael 136

indigenous and Western knowledge,
relationship between 204
individuals, theory of moral
development of 215-16
industry rhetoric: analysis of news
coverage of environmental justice
issues 222-6; future research 228-9;
limitations of study 228; moral
development of individuals, theory of
215-16; moral development of
organizations 216-17; pre-
conventional rhetoric identified in
research 226-8; research on coverage
of environmental justice issues 217,
218, 219-22, 220, 221
informational justice 70, 72
innovation see diffusion of innovations
model innovators 119-20
intelligent design (ID) 49-53, 62n6
interdisciplinary approach to education:
case studies 250; future for at
Arkansas State University 249; model
for at Arkansas State University 246,
247, 248-9; program at Arkansas
State University 241-6; review of
238-41
interdisciplinary research 2
interpersonal fairness 70, 72
interpersonal processes of
communication 35

Jackson, K. A. 176, 177-8
Jenkins, Lissie L. 24
Johnson, B. B. 73-4
Jorgensen, E. M. 167
journalism, science 61
justice: Cancer Cluster Project 76-7;
 Citizen's School project 78-9; coding
 schemes based on 82; distributive 72;
as fairness, social psychological
research on 69-71; as fairness,
summary of findings 80; fairness as,
research on 74-6, 75; future research
79, 81-3; informational 70, 72;
measures of 81; perceptions of local
scientists project 77-8; procedural
72; and risk 76-7
Kahn, M. A. 214
Kahneman, Daniel 44
Keith, W. 137, 142
Keller, E. F. 166, 168
Kenix, L. J. 214
Keränen, L. 198
Kind, A. 174
knowledge: based in communities 15
 (see also American Indians);
 consumer, types of 94-6
Kohlberg, L. 215-16
Kramer, R. 99
Lagasse, E. 178
laggards in adopting new behavior
122-3
late majorities 122
lay expertise model of PUOS 15-16, 17,
29
Lieu, David 26
lightbulbs 113-14, 116-18
literacy in science: low 1; studies
 measuring 12-13
local knowledge 15; see also American
Indians
McComas, K. A. 73
maintenance of behavior changes
116-17
Malvern, Kathryn 24-5, 26
Mango, S. E. 167
Manzini, S. 190-1
marketing, use of to change behavior
114-15
material technology 164-5;
 coordination with other technologies
 173-5, 177-9; of hematopoietic stem
 cells (HSCs) 175; of model organisms
 167-8, 170; and mouse embryonic
 stem (ES) cells 171
McClure, C. T. 239
media: advocacy campaigns concerning
94; on evolution and intelligent
design 51-3; use of and justice
perceptions 77-8; see also news
medications, flushing of 112
Metlay, D. 73
minority communities: conferences for
23-7; radio shows in Spanish
30-1; see also American Indians
Mitaka, T. 176
model organisms: coordination between
technologies 173-5; definition 166;
model organisms — contd
and future research 181–2;
 hematopoietic stem cells (HSCs)
 175–9; impact of contrasting models
 179–80; material technology of
 167–8, 170; mouse embryonic stem
 (ES) cells 171–5; rhetorical
technology of 169, 170; social
technology of 168–9, 170; stem-cell
models 170–9; use of 161–2
Modigliani, Andre 44–5, 212
Mooney, C. 51, 56, 57
moral development: of individuals,
theory of 215–16; of organizations
216–17
mouse embryonic stem (ES) cells 171–5,
179–80
Muehling, C. 94
multidisciplinary approach to
education: case studies 250; future
for at Arkansas State University 249;
model for at Arkansas State
University 246, 247, 248–9; program
at Arkansas State University 241–6;
review of 238–41
National Academies booklet 40–1,
53–4
Nelkin, D. 212
New Rhetoric, The (Perelman &
Olbrechts-Tyteca) 169
news: analysis of coverage of
environmental justice issues 222–6;
framing of and the environmental
justice movement 211–14; future
research 229; limitations of study 228;
pre-conventional rhetoric identified in
research 226–8; research on coverage
of environmental justice issues 217,
218, 219–22, 220, 221; sourcing on
environmental issues 214–15
newsletters 21–3
Nisbet, M. C. 41, 51, 56, 239, 240
Nordhaus, T. 58
norms, use of to change behavior 121,
122
nuclear energy, framing of 46–7
nuclear waste: American Indian
challenge to Western science 194–7;
American Indians use of traditional
Western scientific arguments
198–202; in the US 192–3; Yucca
Mountain repository for 193–4
Olbrechts-Tyteca, L. 169
Olson, Randy 52
Ong, Walter 137
organizations, moral development of
216–17
outcome fairness 69–70
outreach: analysis methods for case
studies 19; “A Question of Genes”
documentary 27–9; assumptions
behind 11; conferences for minority
communities 23–7; Geneletter 21–3;
to increase public engagement 43;
newsletters 21–3; radio shows in
Spanish 30–1; selection of project
case studies 18–19; target audiences
for 20; two categories of 12
participation, public, in environmental
issues 203–4
Pearce, Amy R. 241, 243, 244
perceptions of local scientists project
77–8
Perelman, C. 169
personae: beleaguered administrator
persona 148–52; emergence of during
Fisher controversy 138; meanings of
136–8; reluctant apologist persona
144–8; swashbuckling scientific
revolutionary persona 140–4
persuasion: knowledge 95, 95; reasons
to study messages of 89
Persuasion Knowledge Model (PKM):
audiences as actively coping with
persuasion 96; consumer knowledge,
types of 94–6, 95; identification of
beliefs by 94; and technology
advocacy 96–7
Petersen, B. E. 178
Philipsen, G. 189
Pidgeon, N. F. 73
policy debates, recurring frames of 41
Poortinga, W. 73
precontemplation of behavior change
112–13
pre-conventional rhetoric identified in
research 226–8
Pelli, L. 135
preparation for behavior change
114–15
procedural fairness 69–71
procedural justice 72
Prochaska, J. O. 117
public engagement: different contexts
and levels of 34–5; in environmental issues 203–4; fairness in research on 71–2; model of PUOS 16, 17, 23, 29, 31; new paradigm in 41; outreach to increase 43

public relations, benefits of 89

publics, communication about science by 202

public understanding of science
(PUOS): analysis methods for HGP

radio shows in Spanish 30–1
Rawls, John 68
Reidenbach, R. E. 216
relapse 117–18
religion and science 191–2
reluctant apologist persona 144–8
Renn, O. 71–2
representation and articulation 163–4
Republican War on Science, The
(Mooney) 57
research in science communication: interdisciplinary 2; recent 1–2
rhetoric: analysis of personae, ethos and
voice 155–6; ethos, meanings of 135–6; perceptions of character cultivated by 135; persona, meaning of 136–7; and science, articulation of 162–70; voice 137, 138; see also
industry rhetoric

rhetorical technology 165; coordination with other technologies 173–5,
177–9; of hematopoietic stem cells
(HSCs) 175–6; of model organisms 169, 170; and mouse embryonic stem
(ES) cells 172

risk: and distributive justice 82; future research into fairness and justice 81;
judgement of and audience motives 104; and justice 76–7; justice
perceptions 78

Robin, D. P. 216
Rogers, C. L. 188
Rogers, E. M. 122
Romero, Aldemaro 241, 243–4
Rowe, G. 72
Ryan, A. 68

Saito, L. S. 239
Schaffer, S. 164–6
Schellenberger, M. 58
Scheufele, D. A. 240
Schlenker, B. R. 100
Schwerin, Noel 27–9

science: as a culture 189–91; as interrelated technologies 164–6; as in opposition to culture 188–9; and rhetoric, articulation of 162–70

Science, Evolution, and Creationism booklet 40–1, 53–4

science-based controversies: analysis of role of characters in 155–6; see also Fisher controversy

scientific argument: American

Indians challenge to authority of Western science 194–7; American Indians’ use of traditional Western scientific arguments 198–202; future research 202–4; and public participation in environmental issues 203–4; relationship between indigenous and Western knowledge 204

scientists: approaches to

communication 237–8; challenges of communication between 161

Self-Reliance Foundation (SRF) 30–1
Sethi, S. P. 94
Shapin, S. 164–6
Smith, A. 174–5
Smith, C. A. 213
Snow, C. P. 189
Sobnosky, M. J. 198, 203
social marketing: and audience segmentation 124-5; definition 109; use for environmental behaviour changes 109-10; see also diffusion of innovations model; stages of change model
social norms, use of to change behavior 121, 122
social support to maintain behavior change 117
social technology 165; coordination with other technologies 173-5, 177-9; of hematopoietic stem cells (HSCs) 175; of model organisms 168-9, 170; and mouse embryonic stem (ES) cells 171-2; suppressing effect of 179
spirituality: interplay with science and culture 202-3; knowledge from as disputing science 194-7
Stafford, E. R. 99
stages of change model: action 115; and audience segmentation 110-11; behaviour change as ongoing 111; contemplation 113-14; as dynamic process 110; and future research 123; interpretation of 124; and long-term behavior change 124; maintenance 116-17; precontemplation 112-13; preparation 114-15; relapse 117-18; use with diffusion of innovations model 123-4
stem-cell models 170-80
Stewart, C. J. 213
Stormer, N. 164
swashbuckling scientific revolutionary persona 140-4
Taylor, C. A. 191
technologies of science: coordination between 173-5, 177-9; and future research 180-1; and hematopoietic stem cells (HSCs) 175-9; impact of contrasting models 179-80; interrelated, of science 164-70; and mouse embryonic stem (ES) cells 171-5
technology advocacy: accountability of industries 99-101; corporate 96; definition of 91; examples 91; front groups 93; future research 102-4; implications for future campaigns 104-5; industry familiarity and trust and accountability 103; judgement of risk and audience motives 104; model of public responses to 97, 97-8; objectives of 93-4; perceptions central to responses to 97; and the Persuasion Knowledge Model (PKM) 96-7; reasons to study messages of 89; spending on 91-2; sponsors of campaigns 92-3; trust in sponsors 98-9
temporally oriented social science models see diffusion of innovations; stages of change
Thibaut, J. W. 69
topic knowledge 94-5, 95
traditional model of communication 41-3
training in science communication: academic programs 235; call to increase 235; case studies 250; communicators and scientists approaches to communication 237-8; future for at Arkansas State University 249; interdisciplinary approach, review of 238-41; within journalism departments 236; model for at Arkansas State University 246, 247, 248-9; professionalization of 250; within science programs 235-6
transtheoretical model see stages of change model
Trumbo, C. W. 73
trust 72-4; and character 135; impact on attitudes 101-2; and industry familiarity 103; in technology advocacy 98-9
Tversky, Amos 44
Tyler, T. R. 70
Velicer, W. F. 117
Verfaille, C. M. 176, 177
voice 70, 72, 76, 137, 138
Walker, L. 69
web-based newsletters 21-3
Webler, T. 71-2
We Can Solve It campaign 58-9
"Wedge, The" 50
Wiedemann, P. M. 71-2
Williams, B. L. 214
Wilson, E. O. 58
Wolfe, Deborah, Rev. Dr. 26
Wright, P. 95, 96, 101
Writers, science 61
Wulf, G. G. 176

Yucca Mountain high-level nuclear waste repository: American Indian challenge to Western science 194–7; American Indian opposition to 193–4; American Indians use of traditional Western scientific arguments 198–202; location and storage 193

Zagacki, K. 137, 142
Zibluk, John B. 241, 243, 244
Zuckerman, H. 135